Решение неравенств методом интервалов
Разложить многочлен на простые множители; найти корни многочлена; изобразить их на числовой прямой; разбить числовую прямую на интервалы; определить знаки множителей на интервалах знакопостоянства; выбрать промежутки нужного знака; записать ответ (с помощью скобок или знаков неравенства). План применения метода интервалов
1. Решите методом интервалов неравенства: б) 2. Найдите область определения функции: Вариант 1. а) Вариант 2. б) а) Самостоятельная работа
Проверь своё решение 1. Решите методом интервалов неравенства: Вариант 1. Вариант 2. а) xx 2,50, Ответ: ++ –++ – б) x 1/2 -3/2 ++ – Ответ: x 1/3 -2/3 ++ – Ответ:
Проверь своё решение Вариант 1. Вариант Найдите область определения функции : x 6 0 – – + Ответ: x 7 0 – – + Решение.
Оценка самостоятельной работы За каждый верно выполненный пример – поставьте 1 балл. 1 балл – удовлетворительно, «3». 2 балла – хорошо, «4». 3 балла – отлично, «5».
Решим неравенство Если в разложении многочлена на множители входит сомножитель, то говорят, что - х 0 корень многочлена кратности k. 1) Данный многочлен имеет корни: x = -5, кратности 6; x = -2, кратности 3; x = 0, кратности 1; x = 1, кратности 2; x = 3, кратности 5. 2) Нанесем эти корни на числовую ось. 3) Определим знак многочлена на каждом интервале. + + – – – – 4) Запишем ответ: 5) Рассмотрим смену знаков в корнях различной кратности. МННМ М 1
Решите неравенство 1 вариант: 2 вариант: Сделайте выводы о смене знака на интервалах, в зависимости от степени кратности корня.
Обобщая ваши наблюдения, делаем выводы: При четном k многочлен справа и слева от х 0 имеет один и тот же знак (знак многочлена не меняется). 2 При нечетном k многочлен справа и слева от х 0 имеет противоположные знаки (знак многочлена изменяется). 3 Для решения неравенства важно знать, является ли k четным или нечетным числом. 1
Решение рациональных неравенств Умножим обе части такого неравенства на многочлен Знак исходного неравенства не меняется, (т.к ). Получаем неравенство, равносильное данному неравенству, которое решаем методом интервалов. Решение рациональных неравенств равносильно решению системы: Итак:
2) Сведем данное рациональное неравенство к алгебраическому, умножив неравенство на квадрат знаменателя: 4) Определим знак многочлена при х = 10, и расставим остальные знаки с учетом кратности корней. + – + – – + – МНММ ММ Решим неравенство 1) Найдем область определения неравенства: откуда 3) Находим корни многочлена и определяем их кратность: х =1 (четная кратность), корни 3, -1, 0, 5, -2 (нечетная кратность). x ) Запишем ответ:
389 (а, в), 390 (в, г), 393(а), 394(а). Работа с учебником Для тех кто желает знать больше Постройте эскизы графиков функций !
Повторить §15 (глава II), 389 (б), 390 (б), 393(б), 394(б). Домашнее задание.
Использованные источники 1.Учебник: Алгебра-9 класс, Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова, М.: Просвещение, Рурукин А.Н., Полякова С.А., Поурочные разработки по алгебре: 9 класс. – М.: ВАКО, 2010 – (В помощь школьному учителю) ole ole