С глубокой древности человеку известны пять удивительных многогранников
По числу граней их называют правильный тетраэдр (четырёхгранник)
гексаэдр (шестигранник) или куб
октаэдр (восьмигранник)
додекаэдр (двенадцатигранник)
икосаэдр (двадцатигранник)
Свойства этих многогранников изучали ученые и священники, их модели можно было увидеть в работах архитекторов и ювелиров, им приписывались различные магические и целебные свойства
Великий древнегреческий философ Платон, живший в IV – V вв. до нашей эры, считал, что эти тела олицетворяют сущность природы
Четыре сущности природы были известны человечеству: огонь, вода, земля и воздух. По мнению Платона, их атомы имели вид правильных многогранников
атом огня имел вид тетраэдра, земли – гексаэдра (куба) воздуха – октаэдра воды - икосаэдра
Но оставался додекаэдр, которому не было соответствия Платон предположил, что существует ещё одна (пятая) сущность. Он назвал её мировым эфиром. Атомы этой пятой сущности и имели вид додекаэдра
Платон и его ученики в своих работах большое внимание уделяли перечисленным многогранникам. Поэтому эти многогранники называют также платоновыми телами
Определение правильного многогранника Многогранник называется правильным, если все его грани – равные между собой правильные многогранники, из каждой вершины выходит одинаковое число ребер и все двугранные углы равны
Платоновы тела - трехмерный аналог плоских правильных многоугольников. Однако между двумерным и трехмерным случаями есть важное отличие: существует бесконечно много различных правильных многоугольников, но лишь пять различных правильных многогранников
Доказательство этого факта известно уже более двух тысяч лет; этим доказательством и изучением пяти правильных тел завершаются "Начала" Евклида
Существует лишь пять выпуклых правильных многогранников - тетраэдр, октаэдр и икосаэдр с треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями
Характеристики правильных многогранников Многогранник Число сторон грани Число граней, сходящихся в каждой вершине Число граней (Г) Число ребер (Р) Число вершин (В) Тетраэдр33464 Гексаэдр Октаэдр Икосаэдр Додекаэдр
Развертки правильных многогранников
Двойственность правильных многогранников Гексаэдр (куб) и октаэдр образуют двойственную пару многогранников. Число граней одного многогранника равно числу вершин другого и наоборот.
Возьмем любой куб и рассмотрим многогранник с вершинами в центрах его граней. Как нетрудно убедиться, получим октаэдр
Центры граней октаэдра служат вершинами куба
Икосаэдр и додекаэдр также являются двойственными многогранниками
Двойственным многогранником к тетраэдру является сам тетраэдр