Многоугольники, описанные около окружности Многоугольник называется описанным около окружности, если все его стороны касаются этой окружности. Сама окружность.

Презентация:



Advertisements
Похожие презентации
Многоугольники, описанные около окружности Многоугольник называется описанным около окружности, если все его стороны касаются этой окружности. Сама окружность.
Advertisements

МБОУ «Кваркенская СОШ» Тема: «Многоугольники, описанные около окружности и вписанные в окружность.» Учитель математики : Затолюк Зоя Николаевна.
Геометрия 9 класс Многоугольники. Содержание Правильные многоугольники Параллелограмм Прямоугольник Ромб Трапеция Теоремы о площади четырехугольника.
1© Богомолова ОМ. Многоугольник называется вписанным в окружность, если все его вершины принадлежат окружности Окружность при этом называется описанной.
Задание 7 ( ) Площадь треугольника ABC равна 194, DE средняя линия, параллельная стороне AB. Найдите площадь трапеции ABED.
Трапеция Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие не параллельны. Трапеция называется равнобедренной, если.
МБОУ «Кваркенская СОШ» Тема: «Многоугольники вписанные в окружность» Учитель математики : Затолюк Зоя Николаевна.
1.1. Отрезок, соединяющий несоседние вершины многоугольника, называется.
Многоугольники, вписанные в окружность Многоугольник называется вписанным в окружность, если все его вершины принадлежат окружности. Окружность при этом.
Сборник задач по геометрии из открытого банка данных Разработан ученицей 8 «А» класса МБОУ СОШ 3 г. Канска Воробьевой Аленой.
Многоугольники. Шестиугольник 2. Параллелограмм Определение. Многоугольник – геометрическая фигура, которая составлена из отрезков AB, CD, …, EF, FA таким.
Трапеция Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие не параллельны. Трапеция называется равнобедренной, если.
В 6 Решение задач с геометрическим содержанием. Проверяет умение решать планиметрическую задачу на нахождение геометрической величины (длины). Чтобы успешно.
А В С D Параллелограмм есть четырехугольник, противоположные стороны которого попарно параллельны. Любые две противоположные стороны можно назвать основаниями.
Урок 11 1) Какой многоугольник называется описанным около окружности? 2) Какая окружность называется вписанной в многоугольник? 3) Можно ли вписать окружность.
Площадь многоугольника Площадь произвольного многоугольника можно находить, разбивая его на треугольники. При этом площадь многоугольника будет равна сумме.
Средняя линия треугольника Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
Многоугольники E А B C D F G H I J K L Фадеева Н.В. Учитель математики, гимназия 2.
Виды четырехугольников. Работу выполнила ученица 9 > класса Доленко Мария.
Замечательные точки треугольника К числу замечательных точек треугольника относятся: а) точка пересечения биссектрис – центр вписанной окружности; б) точка.
Транксрипт:

Многоугольники, описанные около окружности Многоугольник называется описанным около окружности, если все его стороны касаются этой окружности. Сама окружность при этом называется вписанной в многоугольник.

Теорема 1 В любой треугольник можно вписать окружность. Ее центром будет точка пересечения биссектрис этого треугольника.

Теорема 2 В любой правильный многоугольник можно вписать окружность. Ее центром является точка пересечения биссектрис углов многоугольника.

Теорема 3 В выпуклый четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны, т.е. AB + CD = AD + BC.

Вопрос 1 Какой многоугольник называется описанным около окружности? Ответ: Многоугольник называется описанным около окружности, если все его стороны касаются этой окружности.

Вопрос 2 Какая окружность называется вписанной в многоугольник? Ответ: Вписанной в многоугольник называется окружность, касающаяся всех сторон этого многоугольника.

Вопрос 3 Во всякий ли треугольник можно вписать окружность? Ответ: Да.

Вопрос 4 Какая точка является центром вписанной в треугольник окружности? Ответ: Центром вписанной окружности является точка пересечения биссектрис этого треугольника.

Вопрос 5 В любой ли правильный многоугольник можно ли вписать окружность? Ответ: Да.

Вопрос 6 Можно ли вписать окружность в: а) остроугольный треугольник; б) прямоугольный треугольник; в) тупоугольный треугольник? Ответ: а) Да; б) да; в) да.

Вопрос 7 Может ли центр вписанной в треугольник окружности находиться вне этого треугольника? Ответ: Нет.

Вопрос 8 Какой вид имеет треугольник, если: а) центры вписанной и описанной около треугольника окружностей совпадают; б) центр вписанной в него окружности принадлежит одной из его высот? Ответ: а) Равносторонний; б) равнобедренный.

Упражнение 1 Укажите центр окружности, вписанной в квадрат ABCD. Ответ:

Упражнение 2 Укажите центр окружности, вписанной в квадрат ABCD. Ответ:

Упражнение 3 Укажите центр окружности, вписанной в ромб ABCD. Ответ:

Упражнение 4 Укажите центр окружности, вписанной в треугольник ABC. Ответ:

Упражнение 5 Укажите центр окружности, вписанной в треугольник ABC. Ответ:

Упражнение 6 Ответ: 2. Найдите радиус окружности, вписанной в квадрат со стороной 4.

Упражнение 7 Ответ: 6. Найдите сторону квадрата, описанного около окружности радиуса 3.

Упражнение 8 Ответ: 10. Найдите высоту трапеции, в которую вписана окружность радиуса 5.

Упражнение 9 Окружность, вписанная в треугольник ABC, делит сторону AB в точке касания D на два отрезка AD = 5 см и DB = 6 см. Найдите периметр треугольника ABC, если известно, что BC = 10 см. Ответ: 30 см.

Упражнение 10 Ответ: 20 см. Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, которые равны 4 см и 3 см, считая от вершины. Найдите периметр треугольника.

Упражнение 11 К окружности, вписанной в треугольник АВС, проведены три касательные. Периметры отсеченных треугольников равны p 1, p 2, p 3. Найдите периметр данного треугольника. Ответ: p 1 + p 2 + p 3.

Упражнение 12 Ответ: 34 см. В равнобедренном треугольнике боковые стороны делятся точками касания вписанной в треугольник окружности в отношении 7:5, считая от вершины, противоположной основанию. Найдите периметр треугольника, если его основание равно 10 см.

Упражнение 13 Ответ: а) Нет; Всегда ли можно ли вписать окружность в: а) прямоугольник; б) параллелограмм; в) ромб; г) квадрат; д) дельтоид ? б) нет; в) да; г) да; д) да.

Упражнение 14 Два равнобедренных треугольника имеют общее основание и расположены по разные стороны от него. Можно ли в образованный ими выпуклый четырехугольник вписать окружность? Ответ: Да.

Упражнение 15 Можно ли вписать окружность в четырехугольник, стороны которого последовательно равны 1, 2, 3, 4? Ответ: Нет.

Упражнение 16 Какой вид имеет четырехугольник, если центр вписанной в него окружности совпадает с точкой пересечения диагоналей? Ответ: Ромб.

Упражнение 17 Около окружности описана трапеция, периметр которой равен 18 см. Найдите ее среднюю линию. Ответ: 4,5 см.

Упражнение 18 В трапецию, периметр которой равен 56 см, вписана окружность. Три последовательные стороны трапеции относятся как 2:7:12. Найдите стороны трапеции. Ответ: 4 см, 14 см, 24 см, 14 см.

Упражнение 19 Боковые стороны трапеции, описанной около окружности, равны 2 см и 4 см. Найдите среднюю линию трапеции. Ответ: 3 см.

Упражнение 20 Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности. Ответ: 2.

Упражнение 21 Докажите, что если в трапецию ABCD (AB||CD) вписана окружность с центром O, то углы AOD и BOC равны 90 о. Доказательство. Лучи AO и DO являются биссектрисами внутренних односторонних углов при параллельных прямых AB и CD. Следовательно, угол AOD равен 90 о. Аналогично, угол BOC равен 90 о.

Упражнение 22 Докажите, что если в равнобедренную трапецию ABCD (AB||CD) вписана окружность, ее боковые стороны AD и BC равны средней линии EF. Доказательство. Сумма боковых сторон трапеции равна сумме оснований. Следовательно, боковая сторона равна полусумме оснований, т.е. равна средней линии.

Упражнение 23 Три последовательные стороны четырехугольника, в который можно вписать окружность, равны 6 см, 8 см и 9 см. Найдите четвертую сторону и периметр этого четырехугольника. Ответ: 7 см, 30 см.

Упражнение 24 Противоположные стороны четырехугольника, описанного около окружности, равны 7 см и 10 см. Можно ли по этим данным найти периметр четырехугольника? Ответ: Да, 34 см.

Упражнение 25 Периметр четырехугольника, описанного около окружности, равен 24, две его стороны равны 5 и 6. Найдите большую из оставшихся сторон. Ответ: 7.

Упражнение 26 К окружности, вписанной в треугольник АВС, проведены три касательные. Периметры отсеченных треугольников равны 6, 8, 10. Найдите периметр данного треугольника. Ответ: 24.

Упражнение 27 В шестиугольнике ABCDEF, описанном около окружности AB = 3, CD = 4, EF = 2. Найдите периметр этого шестиугольника. Ответ: 18.

Упражнение 28* Можно ли вписать окружность в пятиугольник, стороны которого последовательно равны 1, 2, 1, 2, 1? Ответ: Нет. Если в пятиугольник можно вписать окружность, то сумма любых двух его не соседних сторон меньше суммы трех оставшихся сторон.

Упражнение 29* Можно ли вписать окружность в шестиугольник, стороны которого последовательно равны 1, 2, 1, 2, 1, 2? Ответ: Нет. Если в шестиугольник можно вписать окружность, то сумма любых трех его не соседних сторон равна сумме трех оставшихся сторон.

Упражнение 30* Стороны пятиугольника, описанного около окружности, последовательно равны 1, 2, 3, 2, 1. Найдите радиус этой окружности, если угол, заключенный между сторонами, равными 1, равен 120 о. Ответ: