Урок 18 Классная работа 23.07.2015. Цели урока: повторить раннее изученные свойства функции у = tgx; научиться строить график функции у = tgx, используя.

Презентация:



Advertisements
Похожие презентации
Автор: учитель математики Стрелкова Н. В. Стрелкова Н. В. (Алгебра-11) МОУ СОШ 30 Ворошиловского района г.Ростова-на-Дону.
Advertisements

Свойства функции у = tg х и ее график
Урок 19 Классная работа Цели урока: повторить раннее изученные свойства функции у = tgx; уметь строить график функции у = tgx, используя данные.
Функции y = tgx и y = ctgx, их свойства и графики.
Графики тригонометрических функций и их свойства Работу выполнила Невская Наталья.
Тригонометрические функции числового аргумента. Цели урока: Ввести определение числовых функций «Открыть» свойства этих функций Освоить построение графиков.
Функция, ее свойства и график Домашнее задание: § (а,б); 18.3 (б);
Построение графиков показательной функции 25 Января 2007.
Уравнения и неравенства Классная работа Урок 5.
Тригонометрические функции числового аргумента. y = sin x y = cos x.
Функция y=f(x) Свойства функции Цель: закрепить знание функции и свойства функции.
Свойства и графики тригонометрических функций Свойства тригонометрических функций Y=sinx 1. Область определения D(sinx) = R 2. Область значений E(sinx)
РЕШЕНИЕ ПОКАЗАТЕЛЬНЫХ УРАВНЕНИЙ. Тема урока:. Проверка домашнего задания.
У = (х +3) 2 у = х 2 +6 х +9 у 0 1 х -3 1 у = х 2 2.
Выполнили: Безруких Д. Зыкова К. Похабова Д. 10 «Б» класс.
xy Построим график функции у = sin x.
РЕШЕНИЕ НЕРАВЕНСТВ МЕТОДОМ ИНТЕРВАЛОВ (2-ой урок) 9 класс.
y x y=x 2 y=x 4 область определения все действительные числа, т.е. множество R; множество значений неотрицательные числа, т. е. у 0; функция у = х 2n.
Устная контрольная работа Прощание с алгеброй. Цели урока: вспомнить теоретический материал алгебры 7-11-х классов; выявить знания по предмету; интересно.
Урок алгебры в 10 классе на тему «Функция у = sin х»
Транксрипт:

Урок 18 Классная работа

Цели урока: повторить раннее изученные свойства функции у = tgx; научиться строить график функции у = tgx, используя данные свойства функции. на основе анализа графика определить остальные свойства функции научиться решать простейшие уравнения и неравенства с помощью графика функции.

Функция y=tg x и её свойства. 1. Обл. определения:. 2. Множество значений функции: Е(у) = R. 3. Периодическая, Т= π. 4. Нечётная функция. [0;π/2)

Функция y=tg x возрастает на промежутке 1. Пусть 0 x 1 < x 2 < π2 и, 2. Т. к. функция у = sin x возрастает на данном промежутке, то sin х 1 < sin x Т. к. функция у = соs x убывает на данном промежутке, то соs х 1 > соs x 2 и (1) (2) 4. Умножим нер-во (1) на нер-во (2) :, т. е. tg x 1 < tg x 2.

Построение графика функции y=tg x. ху=tg x 00 π 61 3 π 41 π 33 π 2 Не сущ. y x 1 -1 у=tg x

Построение графика функции y=tg x. y x 1 -1 у=tg x

Свойства функции y=tg x. y x 1 -1 у=tg x Нули функции:tg х = 0 при х = πn, nєZ у(х)>0 на (πn; π/2+ πn), n єZ. у(х)<0 на (-π/2+ πn; πn), n єZ.

y x 1 -1 Свойства функции y=tg x. у=tg x При х = π 2+πn, nєZ - функция у=tgx не определена. Рассмотрим т. х=π 2. Слева: sin x 1, сosx 0 и Точки х = π 2+πn, nєZ – точки разрыва функции у=tgx. Асимптоты

Свойства функции y=tgx. 1. Область определения: 2. Множество значений функции: Е(у)=R 3. Периодическая, Т= π 4. Нечётная функция 5. Возрастает на всей области определения 6. Нули функции у (х) = 0 при х = πn, nєZ 7. у(х)>0 на (πn; π/2+ πn), nєZ 8. у(х)<0 на (-π/2+ πn; πn), nєZ 9. При х = π 2+πn, nєZ - функция у=tgx не определена. Имеет точки разрыва графика и асимптоты.

Задача 1. Найти все корни уравнения tgx=2 принадлежащих промежутку –π х 3π 2. Решение. y x 1 -1 у=tg x у=2 1. Построим графики функций у=tgx и у=2 2. х 1 =arctg2 х 2 =arctg2 + π х 3 =arctg2 - π х 1 х 1 х 3 х 3 х 2 х 2

Задача 2. Найти все решения неравенства tgx 2 принадлежащих промежутку –π х 3π 2. Решение. y x 1 -1 у=tg x у=2 1. Построим графики функций у=tgx и у=2 2. х 1 =arctg2 х 2 =arctg2 + π х 3 =arctg2 - π х 1 х 1 х 3 х 3 х 2 х 2 3. (-π ; arctg2- π]U(-π 2; arctg2]U(π 2; arctg2+π]

y x 1 -1 у=tg x Устно: 733Устно:735Устно:734

Домашнее задание § 42 в тетрадях: 736(2,4), 737(2, 4), 744