Аллотропия Аллотропия (от др.-греч. αλλος «другой», τροπος «поворот, свойство») существование одного и того же химического элемента в виде двух и более.

Презентация:



Advertisements
Похожие презентации
ФИО: Тимохина Алёна Владимировна Должность: Учитель Химии Место работы: МОБУ «Рассветская СОШ» им. В. В. Лапина.
Advertisements

МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ Государственное автономное профессиональное образовательное учреждение «Подмосковный колледж «Энергия» Презентация.
Углерод химический элемент с атомным номером 6 в периодической системе, обозначается символом С (лат. Carboneum), неметалл. Схемы строения различных модификаций.
Углерод Аллотропные модификации. Положение в таблице Менделеева Углерод Carbogenium - 6ой элемент в таблице Менделеева. Он располагается в главной подгруппе.
Химический элемент 4-ой группы главной подгруппы 2-го периода периодической системы Менделеева, порядковый номер 6. Латинское название сагboneum Углерод.
Углерод Аллотропные модификации. Положение в таблице Менделеева Углерод Carbogenium - 6ой элемент в таблице Менделеева. Он располагается в главной подгруппе.
Графит Графит Графен Графен Графан Графан. 1.ГРАФИТ.
Углерод и его соединения Работу выполнила: учитель химии Тишина О.Ю.
«ФОСФОР» ФОСФОР КАК ПРОСТОЕ ВЕЩЕСТВО. АЛЛОТРОПНЫЕ ВОЗМОЖНОСТИ ФОСФОРА Р Р Красный Белый Черный.
Вот уголь, вот графит, алмаз, Известный каждому из вас. Известно ль каждому и то Что это всё моё, моё! Родным отцом я всем им был, И без меня б никто.
МОУ- Козихинская средняя общеобразовательная школа. ученица 11 класса Маликова Ирина.
НЕМЕТАЛЛЫ ОБЩАЯ ХАРАКТЕРИСТИКА И СВОЙСТВА НЕМЕТАЛЛОВ.
Цели урока Рассмотреть строение атома и аллотропию углерода. Ознакомить учащихся с явлением адсорбции. Научить учащихся составлять уравнения реакций,
Общая характеристика элементов IV группы Углерод: Строение и аллотропия Химические свойства Круговорот в природе Оксиды углерода: Угарный газ Углекислый.
Углерод – химический элемент и простое вещество. Цели урока: Познакомить учащихся с распространением химического элемента углерода в природе Вспомнить.
Урок по теме «Углерод» Урок на тему «Углерод». «Область соединений углерода так велика, что составляет особую отрасль химии, т.е. химии углеродистых или,
Подгруппа углерода, в которую входят углерод, кремний, германий, олово и свинец, является главной подгруппой 4 группы Периодической системы. Дмитрий Иванович.
Неметаллы Общие сведения: Немета́ллы химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы.
Общая характеристика алмазы графит Красный фосфор сера йод кремний.
Вы, очевидно, помните, что самый первый научной классификацией химических элементов было деление их на металлы и неметаллы. Это классификация не потеряла.
Транксрипт:

Аллотропия Аллотропия (от др.-греч. αλλος «другой», τροπος «поворот, свойство») существование одного и того же химического элемента в виде двух и более простых веществ, различных по строению и свойствам так называемых аллотропических модификаций или аллотропических форм. Аллотропия (от др.-греч. αλλος «другой», τροπος «поворот, свойство») существование одного и того же химического элемента в виде двух и более простых веществ, различных по строению и свойствам так называемых аллотропических модификаций или аллотропических форм.

Положение в таблице Менделеева Углерод Carbogenium - 6 ой элемент в таблице Менделеева. Он располагается в главной подгруппе четвертой группы, втором периоде. Углерод-типичный неметалл. Углерод Carbogenium - 6 ой элемент в таблице Менделеева. Он располагается в главной подгруппе четвертой группы, втором периоде. Углерод-типичный неметалл.

Нахождение в природе Углерод занимает 17-е место по распространенности в земной коре – 0,048%. Но несмотря на это, он играет огромную роль в живой и неживой природе. Углерод занимает 17-е место по распространенности в земной коре – 0,048%. Но несмотря на это, он играет огромную роль в живой и неживой природе.

Углерод входит в состав органических веществ в растительных и живых организмах, в состав ДНК. Содержится в мышечной ткани – 67%, костной ткани – 36% и крови человека (в человеческом организме массой 70 кг в среднем содержится 16 кг связанного углерода).

Свободный углерод В свободном виде углерод встречается в нескольких аллотропных модификациях – алмаз, графит, карбин, крайне редко фуллерены. В лабораториях также были синтезированы многие другие модификации: новые фуллерены, нанотрубки, наночастицы и др. В свободном виде углерод встречается в нескольких аллотропных модификациях – алмаз, графит, карбин, крайне редко фуллерены. В лабораториях также были синтезированы многие другие модификации: новые фуллерены, нанотрубки, наночастицы и др.

Алмаз олрол олрол

Алмаз является одним из наиболее известных аллотропов углерода, чья твёрдость и высокая степень рассеивания света делает его полезным в промышленном применении и в ювелирных изделиях. Алмаз самый твёрдый известный природный минерал, что делает его отличным абразивом и позволяет использовать для шлифовки и полировки. В природной среде нет ни одного известного вещества, способного поцарапать даже мельчайший фрагмент алмаза. Алмаз является одним из наиболее известных аллотропов углерода, чья твёрдость и высокая степень рассеивания света делает его полезным в промышленном применении и в ювелирных изделиях. Алмаз самый твёрдый известный природный минерал, что делает его отличным абразивом и позволяет использовать для шлифовки и полировки. В природной среде нет ни одного известного вещества, способного поцарапать даже мельчайший фрагмент алмаза.

Плотность алмаза – 3,5 г/см 3, t плав =373 0 С, t кип =4830 о С. Алмаз можно получить из графита при p > 50 тыс. атм. и t о = 1200 о C В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество таких связанных в каркас атомов чрезвычайно велико. Плотность алмаза – 3,5 г/см 3, t плав =373 0 С, t кип =4830 о С. Алмаз можно получить из графита при p > 50 тыс. атм. и t о = 1200 о C В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество таких связанных в каркас атомов чрезвычайно велико.

Графит

Графит (назван Абрахамом Готтлобом Вернером в 1789 г, (с греческого графен «тянуть/писать», использовался в карандашах) один из самых обычных аллотропов углерода. Характеризуется гексагональной слоистой структурой. Встречается в природе. Графит (назван Абрахамом Готтлобом Вернером в 1789 г, (с греческого графен «тянуть/писать», использовался в карандашах) один из самых обычных аллотропов углерода. Характеризуется гексагональной слоистой структурой. Встречается в природе. Его плотность 2.3, она меньше чем у алмаза. Приблизительно при 700 °C горит в кислороде, образовывая углекислый газ. По химической активности более реакционен чем алмаз. Это связано с проникновением реагентов между гексагональными слоями атомов углерода в графите. Не взаимодействует с обычными растворителями, кислотами или расплавленными щелочами. Однако, хромовая кислота окисляет его до углекислого газа. Получают нагреванием смеси пека и кокса при 2800 °C; из газообразных углеводородов при °C при пониженных давлениях с последующим нагреванием образовавшегося пироуглерода при °C и давлении около 50 МПа с образованием пирографита. Его плотность 2.3, она меньше чем у алмаза. Приблизительно при 700 °C горит в кислороде, образовывая углекислый газ. По химической активности более реакционен чем алмаз. Это связано с проникновением реагентов между гексагональными слоями атомов углерода в графите. Не взаимодействует с обычными растворителями, кислотами или расплавленными щелочами. Однако, хромовая кислота окисляет его до углекислого газа. Получают нагреванием смеси пека и кокса при 2800 °C; из газообразных углеводородов при °C при пониженных давлениях с последующим нагреванием образовавшегося пироуглерода при °C и давлении около 50 МПа с образованием пирографита.

В отличие от алмаза, графит обладает электропроводностью и широко применяется в электротехнике. Графит является самой устойчивой формой углерода при стандартных условиях. Поэтому в термохимии он принят за стандартное состояние углерода. Применяется для изготовления плавильных тиглей, футеровочных плит, электродов, нагревательных элементов, твердых смазочных материалов, наполнителя пластмасс, замедлителя нейтронов в ядерных реакторах, стержней карандашей, при высоких температурах и давлениях (более 2000 °C и 5 ГПа) для получения синтетического алмаза. В отличие от алмаза, графит обладает электропроводностью и широко применяется в электротехнике. Графит является самой устойчивой формой углерода при стандартных условиях. Поэтому в термохимии он принят за стандартное состояние углерода. Применяется для изготовления плавильных тиглей, футеровочных плит, электродов, нагревательных элементов, твердых смазочных материалов, наполнителя пластмасс, замедлителя нейтронов в ядерных реакторах, стержней карандашей, при высоких температурах и давлениях (более 2000 °C и 5 ГПа) для получения синтетического алмаза.

Карбин

Он имеет вид черного мелкокристаллического порошка, однако может существовать в виде белого вещества с промежуточной плотностью. Карбин обладает полупроводниковыми свойствами, под действием света его проводимость резко увеличивается. Он имеет вид черного мелкокристаллического порошка, однако может существовать в виде белого вещества с промежуточной плотностью. Карбин обладает полупроводниковыми свойствами, под действием света его проводимость резко увеличивается.

Фуллерены

Фуллерены – класс химических соединений, молекулы которых состоят только из углерода, число атомов которого четно, от 32 и более 500, они представляют по структуре выпуклые многогранники, построенные из правильных пяти- и шестиугольников. Фуллерены – класс химических соединений, молекулы которых состоят только из углерода, число атомов которого четно, от 32 и более 500, они представляют по структуре выпуклые многогранники, построенные из правильных пяти- и шестиугольников.

В противоположность графиту и алмазу, структура которых представляет собой периодическую решетку атомов, третья форма чистого углерода является молекулярной. Это означает, что минимальным элементом ее структуры является не атом, а молекула углерода, представляющая собой замкнутую поверхность, которая имеет форму сферы. В противоположность графиту и алмазу, структура которых представляет собой периодическую решетку атомов, третья форма чистого углерода является молекулярной. Это означает, что минимальным элементом ее структуры является не атом, а молекула углерода, представляющая собой замкнутую поверхность, которая имеет форму сферы.

Молекулы фуллеренов, в которых атомы углерода связаны между собой как одинарными, так и двойными связями, являются трехмерными аналогами ароматических структур. Обладая высокой электроотрицательностью, они выступают в химических реакциях как сильные окислители. Присоединяя к себе радикалы различной химической природы, фуллерены способны образовывать широкий класс химических соединений, обладающих различными физико-химическими свойствами. Молекулы фуллеренов, в которых атомы углерода связаны между собой как одинарными, так и двойными связями, являются трехмерными аналогами ароматических структур. Обладая высокой электроотрицательностью, они выступают в химических реакциях как сильные окислители. Присоединяя к себе радикалы различной химической природы, фуллерены способны образовывать широкий класс химических соединений, обладающих различными физико-химическими свойствами.

Кристалл фуллерита имеет плотность 1,7 г/см 3, что значительно меньше плотности графита (2,3 г/см 3 ) и алмаза (3,5 г/см 3 ). Молекула С 60 сохраняет стабильность в инертной атмосфере аргона вплоть до температур порядка 1700 К. В присутствии кислорода при 500 К наблюдается значительное окисление с образованием СО и CO 2. При комнатной температуре окисление происходит при облучении фотонами с энергией 0,55 эВ. что значительно ниже энергии фотонов видимого света (1,54 эВ). Поэтому чистый фуллерит необходимо хранить в темноте. Кристалл фуллерита имеет плотность 1,7 г/см 3, что значительно меньше плотности графита (2,3 г/см 3 ) и алмаза (3,5 г/см 3 ). Молекула С 60 сохраняет стабильность в инертной атмосфере аргона вплоть до температур порядка 1700 К. В присутствии кислорода при 500 К наблюдается значительное окисление с образованием СО и CO 2. При комнатной температуре окисление происходит при облучении фотонами с энергией 0,55 эВ. что значительно ниже энергии фотонов видимого света (1,54 эВ). Поэтому чистый фуллерит необходимо хранить в темноте.

Наночастици В процессе образования фуллеренов из графита образуются также наночастицы. Это замкнутые структуры, подобные фуллеренам, но значительно превышающие их по размеру. В отличие от фуллеренов, они также как и нанотрубки могут содержать несколько слоев., имеют структуру замкнутых, вложенных друг в друга графитовых оболочек. В наночастицах, аналогично графиту, атомы внутри оболочки связаны химическими связями, а между атомами соседних оболочек действует слабое ван-дер-ваальсово взаимодействие. Обычно оболочки наночастиц имеют форму близкую к многограннику. В структуре каждой такой оболочки, кроме шестиугольников, как в структуре графита, есть 12 пятиугольников, наблюдаются дополнительные пары из пяти и семиугольников. В процессе образования фуллеренов из графита образуются также наночастицы. Это замкнутые структуры, подобные фуллеренам, но значительно превышающие их по размеру. В отличие от фуллеренов, они также как и нанотрубки могут содержать несколько слоев., имеют структуру замкнутых, вложенных друг в друга графитовых оболочек. В наночастицах, аналогично графиту, атомы внутри оболочки связаны химическими связями, а между атомами соседних оболочек действует слабое ван-дер-ваальсово взаимодействие. Обычно оболочки наночастиц имеют форму близкую к многограннику. В структуре каждой такой оболочки, кроме шестиугольников, как в структуре графита, есть 12 пятиугольников, наблюдаются дополнительные пары из пяти и семиугольников.

Нанотрубки В основе многих технологических применений нанотрубок лежит такое их свойство, как высокая удельная поверхность (в случае однослойной нанотрубки около 600 кв. м. на 1/г), что открывает возможность их использования в качестве пористого материала в фильтрах и т.д. Такие свойства нанотрубки, как ее малые размеры, меняющаяся в значительных пределах в зависимости от условий синтеза, электропроводность, механическая прочность и химическая стабильность, позволяют рассматривать нанотрубку в качестве основы будущих элементов микроэлектроники. Расчетным путем доказано, что введение в идеальную структуру нанотрубки в качестве дефекта пары пятиугольник–семиугольник изменяет ее электронные свойства. Нанотрубка с внедренным в нее дефектом может рассматриваться как металл- полупроводник, который, в принципе, может составить основу полупроводникового элемента рекордно малых размеров. В основе многих технологических применений нанотрубок лежит такое их свойство, как высокая удельная поверхность (в случае однослойной нанотрубки около 600 кв. м. на 1/г), что открывает возможность их использования в качестве пористого материала в фильтрах и т.д. Такие свойства нанотрубки, как ее малые размеры, меняющаяся в значительных пределах в зависимости от условий синтеза, электропроводность, механическая прочность и химическая стабильность, позволяют рассматривать нанотрубку в качестве основы будущих элементов микроэлектроники. Расчетным путем доказано, что введение в идеальную структуру нанотрубки в качестве дефекта пары пятиугольник–семиугольник изменяет ее электронные свойства. Нанотрубка с внедренным в нее дефектом может рассматриваться как металл- полупроводник, который, в принципе, может составить основу полупроводникового элемента рекордно малых размеров.