Научная сессия-конференция секции ЯФ ОФН РАНФизика фундаментальных взаимодействий (26-30 ноября 2007 г.) Пи-Теория фундаментальных физических констант.

Презентация:



Advertisements
Похожие презентации
Специальная теория относительности Постулаты Эйнштейна Преобразования Лоренца Следствия из преобразований Лоренца.
Advertisements

Презентацию подготовила ученица 10 «Б» класса Ткачёнок Анастасия.
1.3.Термодинамика поверхности Экстенсивные параметры - характеристики, обладающие аддитивностью Cистема в состоянии равновесия может быть полностью охарактеризована.
Сущность Полевой физики Полевая механика Репченко Олег Николаевич
Определение 1. Выражение называется числовым рядом. Числа называются первым, вторым,...,... членами ряда. называется общим членом ряда. Определение 2.
Лекция 2. ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ 2.1. Электростатическое поле. Напряженность поля 2.2. Сложение электростатических полей. Принцип суперпозиции.
ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ Составила: М.П. Филиппова доцент кафедры высшей математики ИМИ СВФУ.
Три закона, лежащие в основе классической механики.
СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ (СТО) 1. Принцип относительности Галилея. Закон сложения скоростей 1. Принцип относительности Галилея. Закон сложения.
Динамика материальной точки. Законы Ньютона Динамика – раздел механики, в котором рассматриваются основные законы, определяющие движение тел. Классическая.
Предел функции Второй замечательный предел Бесконечно малые функции Непрерывность функции в точке Точки разрыва функции Основные теоремы о непрерывных.
Лекция 4 1.Динамика поступательного движения. Критерии: S, V, a, t, m, p (импульс), F. 2.Закон сохранения импульса. Основной закон динамики поступательного.
Бесконечна ли наша Вселенная? Подготовила ученица 11-А СЗШ 80 Герасименко Карина.
Системы m линейных уравнений с n неизвестными. Определение: Определение. Система m уравнений с n неизвестными в общем виде записывается следующим образом:
9.6 Следствия преобразований Лоренца 1) Длина тел в разных системах. Лоренцево сокращение Пусть в системе отсчета K' покоится стержень, параллельный оси.
§ 19. Поле как способ описания взаимодействия. Не только протяженные объекты можно описывать в терминах «поле». Взаимодействия между объектами, которые.
Лекция 2. Параметры заторможенного газа Если на данной линии тока (траектории) есть точка или сечение потока, в котором скорость равна нулю, то говорят,
Теория размерностей или как легко выводить и вспоминать физические формулы Что такое физические формулы? Уравнения связывающие различные физические величины.
9. Специальная теория относительности 9.1 Недостатки механики Ньютона-Галилея 1) В механике Ньютона взаимодействие частиц описывается с помощью потенциальной.
Лектор Пахомова Е.Г г. Математический анализ Раздел: Интегрирование ФНП Тема: Тройной интеграл.
Транксрипт:

Научная сессия-конференция секции ЯФ ОФН РАНФизика фундаментальных взаимодействий (26-30 ноября 2007 г.) Пи-Теория фундаментальных физических констант 30 ноября 2007 г. В.Б. Смоленский

Пи-Теория фундаментальных физических констант исходит из следующих предположений: 1. Физическая реальность существует как компромисс между полным наличием и полным отсутствием самой себя. 2. Для определения пространственно - временных параметров физической реальности достаточно системы единиц LT и числа пи. 3. Физическая масса M есть площадь эквивалентная данной физической массе. 4. Физическая реальность, формируя метрический интервал должна полностью скомпенсировать эквивалентным ему псевдометрическим интервалом. С и Т - скорость и время компенсации. 5. Скорость распространения взаимодействий конечна. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Компенсационный принцип (далее К-принцип), запишем как: где n – размерность пространства. К-принцип, в общем случае, можно записать как: или: и - значения размерного или безразмерного параметра физической реальности, находящиеся в пределах: N - целое число, находящееся в пределах © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

6.Физическая реальность существует только в границах своих параметров L и T: - предельные значения параметров L и T физической реальности. 7. Безразмерные фундаментальные физические постоянные не изменяются со временем. 8. Справедлив принцип причинности. 9. Выполняется принцип эквивалентности. Запишем в системе единиц LT широко известные планковские параметры физической реальности: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

- гравитационная постоянная Ньютона; - постоянная Планка - планковская плотность - планковский объем © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Определим постоянную Представим в виде: где - некоторая безразмерная постоянная, тогда: где и – соответственно масса и комптоновская длина волны электрона. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

В виду того, что: Уравнение взаимосвязи фундаментальных физических констант запишется как: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Уравнение взаимосвязи фундаментальных физических констант © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Уравнение для расчета элементарного объема Из последнего уравнения следует, что электрон должен иметь массу покоя, т.к. при любом изменении элементарный объем не будет постоянным. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Уравнение для © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Уравнение для расчета гравитационной постоянной © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Фазовый радиус вселенной © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Фазовый и метрический объемы тела N T – число частиц составляющих тело. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Всегда должны выполняться соотношения: - ускорение тела © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

уравнение взаимосвязи фундаментальных физических констант © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

применение К-принципа (частный случай) © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Земля © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Определим абсолютную пустоту как некую параметрическую абстракцию - среду, которой нет и в которой ничего нет. Тогда, условно говоря, в такой среде нельзя создать или определить даже одну точку, ведь среды нет. Определим абсолютную полноту как сплошную среду, которая есть и в которой все есть. Тогда мы не сможем уничтожить или определить точку в этой сплошной среде, потому что точки среды должны отличаться друг от друга, а отличий нет. Даже нет понятия точки, потому что среда сплошная. Если мы не можем определить точку в среде, то значит, мы не можем судить о среде, т.е. чем является среда: абсолютной пустотой или абсолютной полнотой. Каким образом такие сущности как абсолютные пустота и полнота могут проявить себя? Предположим, что Природа не может реализовываться или существовать в виде только абсолютной пустоты или только абсолютной полноты. Тогда, если это так, Природа делает выбор, если реализует только один из вариантов: или абсолютная пустота или абсолютная полнота. Представляется верным предположить, что должен быть компромисс в виде реализации компенсационного принципа, т.е. Природа существует одновременно как абсолютная пустота и как абсолютная полнота, которые каким-то образом скомпенсированы. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Добавление хотя бы одного элемента к абсолютной пустоте делает ее не абсолютной пустотой. Уменьшение абсолютной полноты хотя бы на один элемент делает ее не абсолютной полнотой. Как Природа может изменить (уменьшить) абсолютную полноту и изменить (увеличить) абсолютную пустоту? Природа подчиняется следующему компенсационному уравнению: тогда: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Пусть выполняется соотношение: Пусть появился только один 0-мерный объем, т.е. выполняется условие: Тогда: Причем появился именно 0-мерный объем, а не его ордината, т.к. в силу соотношения: ордината объема нулевой размерности не определяется. вместе с должен появиться 0-мерный объем : © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

или Получается, что одновременно должны существовать объемы и, причем: Тогда можно записать: Мы имеем своеобразный принцип неопределенности: неизвестно, содержит ли единичный 0-мерный объем только один 0-мерный объем или содержит 0-мерных объемов. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Тогда можно записать: Исходя из того, что: Используя соотношение для К-принципа: запишем: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

или: Тогда можно записать: в общем случае: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

для объемов с размерностью больше нуля выполняется соотношение: Последняя система уравнений представляет собой ни что иное как математическую интерпретацию принципа причинности. Природа не может создать вначале объемы с размерностью больше нуля, т.е. метрические объемы, а потом уже нульмерные объемы. Это логически некорректно. Более того, возникает сразу вопрос, а какое количество минимальных метрических объемов нужно создать. Природа, вообще говоря, должна создать, как минимум, хотя бы один физический объект находящийся в двух разных состояниях, например, объект имеющий одновременно минимальный и максимальный метрический объем. Это невозможно, в виду конечной скорости распространения взаимодействий и, если иметь в виду реальный максимальный метрический объем. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Природа создать эти метрические объемы не может, т.к., по условию, физический объект одновременно не может находиться в двух разных состояниях, т.е., в нашем случае, иметь два разных трехмерных метрических объема. И, тем не менее, Природа находит выход из положения. Природа создает один минимальный метрический объем, равный: или: Обозначим: Тогда: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Запишем для 4-х мерного случая систему уравнений: Из системы уравнений следует, что: Или, в более общем случае: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Из последнего уравнения мы получаем ответ на вопрос почему пространство трехмерно. Потому что, при, объем запишется как. Представляется верным интерпретировать это обстоятельство как запрет Природы на существование объемов отрицательной размерности и, очевидно, как следствие, запрет на существование отрицательных объемов. Запишем следующие выражения, проясняющие сложившуюся ситуацию. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Выражение: можно записать в виде: и в виде: Записанные уравнения тождественны абсолютно, поэтому Природа должна реализовать оба варианта. Но мы до этого выяснили, что невозможно одному физическому объекту одновременно находиться в двух различных состояниях, поэтому Природа одномоментно создает: 1.Метрические объемы: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

2. Фазовые объемы: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Следует иметь в виду, что есть реальный метрический объем, а - псевдореальный объем, который равен максимальному значению реального метрического объема нашей вселенной. Таким образом, вселенная должна расширяться от реального объема до реального объема равного. Возможен и обратный процесс. В любом случае, на переходный процесс из одного состояния в другое, проходящий с конечной скоростью требуется время. В этом и состоит природа времени. Стрела времени имеет только одно направление. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Какие экспериментальные факты могли бы опровергнуть Теорию 1. Нарушение принципа причинности. 2. Нарушение принципа эквивалентности. 3. Переменность со временем фундаментальных безразмерных констант. 4. Бесконечная скорость распространения взаимодействий. 5. Нестабильность протона. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант