Издательство Легион» Задачи по теории вероятности.

Презентация:



Advertisements
Похожие презентации
Два случайных события называются независимыми, если наступление одного из них не изменяет вероятность наступления другого. Для независимых событий теорема.
Advertisements

МБОУ СОШ 5 – «Школа здоровья и развития» г. Радужный Решение заданий В10 по материалам открытого банка задач ЕГЭ по математике Автор: Семёнова Елена Юрьевна.
Начать тестирование 12 Всего заданий Введите фамилию и имя Тренажёр Задание 5 Учитель математики МБОУ СОШ 6 г.Радужный Сырица Оксана Владимировна 2015.
Решение заданий В10 по материалам открытого банка задач ЕГЭ по математике 2013 года.
Издательство «Легион» Демовариант ЕГЭ 2012 по математике докладчик: Кулабухов Сергей Юрьевич.
Задание B10 ( ) В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите.
Издательство «Легион» Табличный метод решения задач ЕГЭ по теории вероятностей докладчик: Кулабухов Сергей Юрьевич.
Обучающая презентация по решению задач на теорию вероятности Подготовка к ГИА и ЕГЭ Учитель математики МАОУ « Лицей 62» Воеводина Ольга Анатольевна.
Начать тестирование Введите фамилию и имя. из 1 1 Вася, Петя, Коля и Леша бросили жребий – кому начинать игру. Найдите вероятность того, что игру будет.
Евстигнеева Елена Владимировна У читель математики МКОУ « Красноуральская СОШ» Курганская область Юргамышский район.
В10 ЕГЭ-2013 Простейшие вероятностные задачи. Решение заданий по материалам ЕГЭ Александрова О.С., учитель математики и информатики МОУ «СОШ 76» г.Саратова.
Решение задач. По теме «Вероятность».. Задача Условие: Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со.
ТЕОРИЯ ВЕРОЯТНОСТЕЙ В ЗАДАЧАХ ЕГЭ И ГИА ГБОУ СОШ 762 г. Москва 2012.
Решение задач по теории вероятностей Немченко Е.А. учитель математики Орудьевской сош.
Однотипные задачи под номерами одного цвета. Чтобы увидеть решение задачи, кликните по тексту. Чтобы увидеть ответ к задаче, кликните по кнопке:
Решение задач типа B10 Выполняли ученицы 11 А класса МАОУ СОШ 40 г.Томска Ечина Екатерина и Пономарева Анна 2012г.
Начать тестирование Введите фамилию и имя. из 1 ТЕОРИЯ ВЕРОЯТНОСТЕЙ Ответ: 1 Вася, Петя, Костя и Миша бросили жребий – кому начинать игру. Найдите вероятность.
Работу выполнила Курылева Э. Р. учитель математики МОУ « СОШ 42» г. Воркута 2012.
Тема урока: «Простейшие вероятностные задачи». 11 класс.
Решение задач по теории вероятности. Справочный материал Элементарные события (исходы) Элементарные события (исходы) – простейшие события, которыми может.
Транксрипт:

Издательство Легион» Задачи по теории вероятности

Задания В6

Спецификация КИМ ЕГЭ 2014 по математике (фрагмент) Кодификатор элементов содержания КИМ ЕГЭ 2014 по математике (фрагмент) Кодификатор требований к уровню подготовки выпускников, КИМ ЕГЭ 2014 по математике (фрагмент)

Основные теоремы Если события А и B независимы, то

Примеры задач В10 (сайт 1. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых. Ответ: 0,14 2. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз. Ответ: 0,5 3. В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая. Ответ: 0,25 4. Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых. Ответ: 0,93

5. Научная конференция проводится в 5 дней. Всего запланировано 50 докладов первые три дня по 12 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора Н. окажется запланированным на последний день конференции?

6. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России? Ответ: 0,36 7. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,45. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,4. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

8. В чемпионате мира участвуют 24 команды. С помощью жребия их нужно разделить на четыре группы по шесть команд в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4. Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется в третьей группе?

9. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем. Ответ: 0,35

10. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,4. Вероятность того, что кофе закончится в обоих автоматах, равна 0,22. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

11. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6. Найдите вероятность того, что биатлонист первые два раза попал в мишени, а последние три промахнулся. Результат округлите до сотых.

12. Вероятность того, что новая кофемолка прослужит больше года, равна 0,93. Вероятность того, что она прослужит больше двух лет, равна 0,81. Найдите вероятность того, что кофемолка прослужит меньше двух лет, но больше года.

13. Агрофирма закупает куриные яйца в двух домашних хозяйствах. 60% яиц из первого хозяйства яйца высшей категории, а из второго хозяйства 40% яиц высшей категории. Всего высшую категорию получает 48% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

14. Ковбой Билл попадает в муху на стене с вероятностью 0,8, если стреляет из пристрелянного револьвера. Если Билл стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,25. На столе лежит 5 револьверов, из них только 2 пристрелянные. Ковбой Билл видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Билл попадёт в муху. Ответ: 0.47

15. В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин? Ответ: На рок-фестивале выступают группы по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых. Ответ: 0,33

17. При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,2, а при каждом последующем 0,7. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?

18. Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,05. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,98. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,08. Найдите вероятность того, что случайно выбранная из упаковки батарейка будет забракована системой контроля.

20. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу D. Ответ: 0,0625