Уравнение касательной к графику функции I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII.

Презентация:



Advertisements
Похожие презентации
Презентация учителя математики Агарковой О.Н. Уравнение касательной к графику функции I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I.
Advertisements

Задачи типа В12 в ЕГЭ Исследование функций. I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I.
Уравнение касательной к графику функции. I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII.
ТЕМА УРОКА: «Касательная. Уравнение касательной» Павловская Нина Михайловна, учитель математики.
Классная работа. Уравнение касательной к графику функции У уравнение касательной к графику к графику функции 10 б класс Учитель Андрющук Н.М.
Уравнение касательной.. Укажите точки, в которых производная равна 0 или не существует.
Урок алгебры и начала анализа В 11 классе (Учебник Алимова Ш.А кл) Учителя лицея 179 ПАК НАТАЛЬИ НИКОЛАЕВНЫ.
Уравнение касательной к графику функции Алгебра и начала анализа 11 класс х у О ГОУ школа 564, Николаева С.М.
Пусть функция y=f(x) определена на промежутке Х. Выберем точку Дадим аргументу x приращение Δx, тогда функция получит приращение Δy=f(x+Δx)- f(x).
Уравнение касательной к графику функции. 11 класс Математический профиль УМК «Алгебра и начала анализа» С.М. Никольский и др. Учитель Злобина Э.В.
Производная и ее применение Выполнила : Федотова Анастасия.
ПРОИЗВОДНАЯ ФУНКЦИИ В ТОЧКЕ Лекция 1 Дифференциальное исчисление Автор: И. В. Дайняк, к.т.н., доцент кафедры высшей математики БГУИР.
Задания для устного счета Козлова Елена Викторовна, МБОУ «Никифоровская СОШ 2» Геометрический смысл производной.
Производная функции.
Что называется производной? Производной функции в данной точке называется предел отношения приращения функции в этой точке к приращению аргумента, когда.
Применение производной к решению задач ЕГЭ Скоро ЕГЭ! Но еще есть время подготовиться!
Бессонова Т.Д. ВСОШ7 Г.Мурманск Структура изучения темы Приращение аргумента, приращение функции Определение производной Нахождение производной.
Применение производной для исследования функции на монотонность и экстремумы.
Уравнение касательной 1 урок. Геометрический смысл производной заключается в том, что значение производной функции y = f(x) в точке х есть тангенс угла.
«Касательная к графику функции» ВЫПОЛНИЛ: учитель математики высшей категории МОУ «СОШ 1» Города Магнитогорска Пупкова Татьяна Владимировна.
Транксрипт:

Уравнение касательной к графику функции I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I I III I IIII I IIII I IIII I IIII I IIII I IIII I IIII I IIII I

Верно ли определение? Касательная – это прямая, имеющая с данной кривой одну общую точку.

Пусть дана и две прямые и, имеющая с данной параболой одну общую точку М (1;1).

На данном уроке: 1.выясним, что же такое касательная к графику функции в точке, как составить уравнение касательной; 2. рассмотрим основные задачи на составление уравнения касательной. Для этого: вспомним общий вид уравнения прямой условия параллельности прямых определение производной правила дифференцирования Формулы дифференцирования

Определение производной Пусть функция определена в некотором интервале, содержащем внутри себя точку. Дадим аргументу приращение такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции и составим отношение.Если существует предел отношения при, то указанный предел называют производной функции в точке и обозначают.

Правила дифференцирования 1. Производная суммы равна сумме производных. 2. Постоянный множитель можно вынести за знак производной. 3. Производная произведения двух функций равна сумме двух слагаемых; первое слагаемое есть произведение производной первой функции на вторую функцию, а второе слагаемое есть произведение первой функции на производную второй функции. 4. Производная частного

Основные формулы дифференцирования С

Две прямые параллельны тогда и только тогда, когда их угловые коэффициенты равны Параллельны ли прямые:

Пусть дан график функции y=f(x). На нем выбрана точка M(a;f(a)), в этой точке к графику функции проведена касательная (мы предполагаем, что она существует). Найти угловой коэффициент касательной.

Геометрический смысл производной Если к графику функции y = f (x) в точке можно провести касательную, непараллельную оси у, то выражает угловой коэффициент касательной

Геометрический смысл производной Производная в точке равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке. Т.е. Причем, если :.

Вывод уравнения касательной Пусть прямая задана уравнением: уравнение касательной к графику функции

Составить уравнение касательной: к графику функции в точке

Составить уравнение касательной: к графику функции в точке

Алгоритм нахождения уравнения касательной к графику функции y=f(x). 1. Обозначим абсциссу точки касания буквой x=a. 2.Вычислим. 3. Найдем и. 4. Подставим найденные числа a, в формулу

Составить уравнение касательной к графику функции в точке. Ответ :

К графику функции провести касательную так, чтобы она была параллельна прямой..,,,,.

Самостоятельная работа

Номера из учебника 29.3 (а,в) (б,г) (а)

Ответьте на вопросы: 1. Что называется касательной к графику функции в точке? 2. В чем заключается геометрический смысл производной? 3. Сформулируйте алгоритм нахождения уравнения касательной?

Домашняя работа 29.3 (б,г) (а,в) (б)

Литература 1. Алгебра и начала математического анализа: Учеб. Для кл. для учащихся общеобразовательных учреждений (базовый уровень) / Под редакцией А.Г. Мордковича. – М.: Мнемозина, Алгебра и начала математического анализа: Задачник, Для кл. для учащихся общеобразовательных учреждений (базовый уровень) / Под редакцией А.Г. Мордковича. – М.: Мнемозина, Алгебра и начала анализа. Самостоятельные и контрольные работы для классов. / Ершова А.П., Голобородько В.В. – М.: ИЛЕКСА, ЕГЭ Математика. Задача В8. Рабочая тетрадь / Под редакцией А.Л.Семенова и И.В.Ященко – M.: Издательство МЦНМО, 2010