Различные способы доказательства теоремы Пифагора. Выполнила: ученица 8 «А»класса МБОУ «ООШ 26» г. Энгельса Люсина Алёна. Учитель: Еремеева Елена Борисовна
История теоремы. Чу-пей лет до нашей эры. Слева надпись: сумма квадратов длин высоты и основания есть квадрат длины гипотенузы. В древнекитайской книге Чу-пей (англ.) (кит. ) говорится о пифагоровом треугольнике со сторонами 3, 4 и 5. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.
История теоремы. Мориц Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам ещё около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора, гарпедонапты, или «натягиватели верёвок», строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.
История теоремы. Согласно комментарию Прокла к Евклиду, Пифагор (годами жизни которого принято считать гг. до н. э.) использовал алгебраические методы, чтобы находить пифагоровы тройки. Однако Прокл считал,что не существует явного упоминания,что Пифагор был автором теоремы. Однако, когда авторы, такие как Плутарх и Цицерон, пишут о теореме Пифагора, они пишут так, как будто авторство Пифагора было широко известным и несомненным.«Принадлежит ли эта формула лично перу Пифагора…, но мы можем уверенно считать, что она принадлежит древнейшему периоду пифагорейской математики». По преданию, Пифагор отпраздновал открытие своей теоремы гигантским пиром, заклав на радостях сотню быков. Приблизительно в 400 г. до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Приблизительно в 300 г. до н. э. в «Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора.
Формулировки теоремы. Теорема Пифагора: Сумма площадей квадратов, опирающихся на катеты (a и b), равна площади квадрата, построенного на гипотенузе (c). Геометрическая формулировка:Геометрическая формулировка: Изначально теорема была сформулирована следующим образом: В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.
Формулировки теоремы. Алгебраическая формулировка: В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.
Доказательства. На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.
Доказательство через равно дополняемость Рассмотрим прямоугольный треугольник с катетами a, b и гипотенузой c. Достроим треугольник до квадрата со стороной a+b так, как показано на рисунке справа. Площадь S этого квадрата равна (a+b) 2. С другой стороны, этот квадрат составлен из четырёх равных прямоугольных треугольников, площадь каждого из которых равна ab, и квадрата со стороной c, поэтому S=4 · ab+c 2 =2ab+c 2. Таким образом, (a+b) 2 =2ab+c 2, откуда a 2 +b 2 =c 2. Теорема доказана.
Доказательство Леонардо да Винчи Главные элементы доказательства симметрия и движение. Рассмотрим чертёж, как видно из симметрии, отрезок CI рассекает квадрат ABHJ на две одинаковые части (так как треугольники ABC и JHI равны по построению). Пользуясь поворотом на 90 градусов против часовой стрелки вокруг точки A, мы усматриваем равенство заштрихованных фигур CAJI и DABG. Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей маленьких квадратов (построенных на катетах) и площади исходного треугольника. С другой стороны, она равна половине площади большого квадрата (построенного на гипотенузе) плюс площадь исходного треугольника. Таким образом, половина суммы площадей маленьких квадратов равна половине площади большого квадрата, а следовательно сумма площадей квадратов, построенных на катетах равна площади квадрата, построенного на гипотенузе.
Здесь изображена обычная Пифагорова фигура – прямоугольный треугольник ABC с построенными на его сторонах квадратами. К этой фигуре присоединены треугольники 1 и 2, равные исходному прямоугольному треугольнику. Доказательства методом построения
«Колесо с лопастями» Здесь: ABC– прямоугольный треугольник с прямым углом C; O – центр квадрата, построенного на большом катете; пунктирные прямые, проходящие через точку O, перпендикулярны или параллельны гипотенузе. Это разложение квадратов интересно тем, что его попарно равные четырехугольники могут быть отображены друг на друга параллельным переносом.
Доказательство ан-Найризия В этом разбиении квадрат, построенный на гипотенузе, разбит на 3 треугольника и 2 четырехугольника Здесь: ABC – прямоугольный треугольник с прямым углом C.
Доказательство Бхаскари Рисунок сопровождало лишь одно слово: СМОТРИ!
Доказательство Гарфилда Здесь три прямоугольных треугольника составляют трапецию. Поэтому площадь этой фигуры можно находить по формуле площади прямоугольной трапеции, либо как сумму площадей трех треугольников. В первом случае эта площадь равна во втором. Приравнивая эти выражения, получаем теорему Пифагора.
Теорема Пифагора одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника. «Колесо с лопастями» Доказательство ан-Найризия Доказательство Гарфилда
Атанасян Л.С.,Геометрия: учеб. для 7-9 кл. сред.шк./авт.-сост. Л.С. Атанасян, В.Ф.Бутузов и др.//.-М.: Просвещение,1994. Погорелов А.В., Геометрия: учебн. для 7-11 кл. общеобразоват. учреждений.-6-е изд.-М.: Просвещение, Энциклопедия для детей. Т.11. Математика /глав. ред. М.Д. Аксенова. м: Аванта +, Энциклопедический словарь юного математика /сост. А.П. Савин. -М.: Педагогика, Литература