Работу выполнили : 1. Александров Александр 2. Смирнов Валерий 3. Иванов Стас 4. Яковлев Евгений 5. Егоров Андрей ФГУ СПО «Чебоксарский Электромеханический.

Презентация:



Advertisements
Похожие презентации
Разработал презентацию: Костерин Виталий Алексеевич Арзубова Юлия Олеговна Ученик 10 класса.
Advertisements

Ховаева Екатерина, 10 класс. Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется.
Правильные фигуры в геометрии Учитель математики Беленкова Ольга Александровна.
Работа выполнена ученицей 10 класса В МОУ лицея 29 Мамонтовой Кристиной Учитель Калужина Т.Н.
Правильные многогранники Работа учеников 10 б Иванова Николая и Митченко Егора.
Выполнил: Соколов Дмитрий, 10а класс МОУ СОШ 3 г.Мантурово, 2009 год. Учитель: Малышева С.Ю., учитель математики.
Куб (правильный гексаэдр) ВЫПОЛНЯЛИ: Ермолаев Данил и Суворова Диана.
Выполнила: Цуканова Светлана 10«А». Изучить определения и свойства правильных многогранников Выступить с сообщением в классе Получить положительную оценку.
Определение и условия Виды и свойства Виды и свойства Теория Кеплера Теория Кеплера Три закона Кеплера Три закона Кеплера Многоугольники в мире Правильные.
ГЕОМЕТРИЧЕСКИЕ ТЕЛА. Классификация ГЕОМЕТРИЧЕСКИЕ ТЕЛА МНОГОГРАННИКИ ТЕЛА ВРАЩЕНИЯ ПРИЗМА ПИРАМИДА ПРАВИЛЬНЫЕ МНОГОГРАННИКИ ЦИЛИНДР КОНУС ШАР.
О пределение п равильного м ногогранника Многогранник н азывается п равильным, е сли : о н в ыпуклый, в се е го г рани - р авные п равильные многоугольники,
Правильные многогранники. Цель и задачи: Закрепление изученного материала; Закрепление изученного материала; Увеличение интереса к геометрии; Увеличение.
МОУ «Цветочинская СОШ» Выполнили: Нусс Татьяна Скляр Таисия Проект по геометрии.
Обирина Людмила Ивановна Преподаватель КГБОУ СПО « НПК » Геометрические фигуры в пространстве Норильск, 2015.
Правильные выпуклые многогранники Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник.
Презентация:«Параллелепипед»
Содержание: 1)Титульный лист 2)Определение тетраэдра и его свойства 3)Построение тетраэдра 4)Формула объема тетраэдра 5)Определение параллелепипеда его.
Правильные многогранники 1) Симметрия в пространстве. 1) Симметрия в пространстве. 2) Понятие правильного многогранника. 2) Понятие правильного многогранника.
Правильные многогранники Выполнил: Ученик 10 б класса, школы 80 Гречкин Ярослав Учитель Шамсутдинова Р.Р.
Транксрипт:

Работу выполнили : 1. Александров Александр 2. Смирнов Валерий 3. Иванов Стас 4. Яковлев Евгений 5. Егоров Андрей ФГУ СПО «Чебоксарский Электромеханический Колледж»

Гексаэдр или куб правильный многогранник, каждая грань которого представляет собой квадрат, частным случаем является параллелепипед и призма.

Очень часто, в предметной съёмке нам приходится иметь дело с предметами, которые имеют блестящую поверхность. При этом снимки таких объектов страдают засвеченными участками из-за характерных световых бликов, от которых довольно трудно избавиться при постановке освещения. Во избежание их появления, в качестве дополнительного, но важного аксессуара вам понадобится так называемый лайт-куб, схематическое изображение которого приведено выше.

Ось симметрии куба может проходить либо через середины параллельных ребер, не принадлежащих одной грани, либо через точку пересечения диагоналей противоположных граней. Центром симметрии куба является точка пересечения его диагоналей.

В различных дисциплинах используются значения термина, имеющие отношения к тем или иным свойствам геометрического прототипа. В частности, в аналитике (OLAP- анализ ) применяются так называемые аналитические многомерные кубы, позволяющие в наглядном виде сопоставить данные из различных таблиц.

Куб имеет центр симметрии - центр куба, 9 осей симметрии и 9 плоскостей симметрии. Площадь поверхности куба : S=6*a Объем куба : V=a*a*a Радиус вписанной сферы : ½*a Радиус описанной сферы :sqrt3/2*a Угол наклона грани : П /2 Угол наклона ребра : П /2

Куб составлен из шести квадратов. Каждая его вершина является вершиной трех квадратов. Сумма плоских углов при каждой вершине равна 270 градусов. Таким образом, куб имеет 6 граней, 8 вершин и 12 ребер.

Диагональю куба называют отрезок, соединяющий две вершины, симметричные относительно центра куба. Диагональ куба находится по формуле d=a*sqrt3, где d - диагональ, а - ребро куба.

Четыре сечения куба являются правильными шестиугольниками эти сечения проходят через центр куба перпендикулярно четырём его главным диагоналям.

В куб можно вписать тетраэдр двумя способами. В обоих случаях четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба и все шесть рёбер тетраэдра будут принадлежать граням куба. В первом случае все вершины тетраэдра принадлежат граням трехгранного угла, вершина которого совпадает с одной из вершин куба. Во втором случае попарно скрещивающиеся ребра тетраэдра принадлежат попарно противолежащим граням куба. Такой тетраэдр является правильным.

В куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба.

Куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра.

В куб можно вписать икосаэдр, при этом шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба. Все двенадцать вершин икосаэдра будут лежать на шести гранях куба.

На данный момент куб является самым распространённой фигурой во всей математике. Её применение не знает границ.