Пирамиды, несмотря на свою древность, могут многому нас научить. Исследованием пирамид с использованием новейших приборов занимались американцы, японцы.

Презентация:



Advertisements
Похожие презентации
Усечённая пирамида Над презентацией работали: Киселёва Анна Коскина Юля Новикова Яна.
Advertisements

Понятие ГОМОТЕТИЯ (от греч. homos – общий и thetos - расположенный) (преобразование подобия) – преобразование плоскости или пространства, при котором.
Определение пирамиды Виды пирамид Формулы Решение задач.
Усеченный конус. МОУ СОШ 256 г.Фокино. Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей плоскостью, параллельной.
Объем пирамиды и усеченной пирамиды. Реши задачу Дана правильная треугольная пирамида со стороной основания 43. Боковое ребро пирамиды наклонено к плоскости.
Пирамида.
Комбинации шара с пирамидой. Определение Пирамида называется вписанной в шар, если все ее вершины лежат на границе этого шара. При этом шар называется.
Двугранный угол Двугранный угол – это фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Грань Ребро Грань Линейный угол.
Выполнил: Ледов Владислав. Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой Плоскость, перпендикулярная.
апофема высота боковой грани правильной пирамиды, проведённая из её вершины; боковые грани треугольники, сходящиеся в вершине; боковые ребра общие стороны.
Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей плоскостью, параллельной основанию. Круги, лежащие в параллельных.
Усеченная пирамида. Часть пирамиды, лежащая между основанием и параллельным основанию сечением, называется усеченной пирамидой. Боковые грани усеченной.
Презентация по геометрии Тема: «Пирамида». Определение Пирамидой называется многогранник, который состоит из плоского многоугольника --- основания пирамиды,
А C B D В правильной 3-уг. Пирамиде сторона основания равна а, высота Н. Найдите: а) боковое ребро; б) плоский угол при вершине пирамиды; в) угол между.
Геометрия Решение задачГеометрия Решение задачУстно…
Пирамида.Пирамида. Усечённая пирамида.. Архитектура и геометрия.
Геометрия Пирамида. Пирамида - многогранник, основание которого многоугольник, а остальные грани треугольники, имеющие общую вершину. По числу углов основания.
BC E M H Многогранник, составленный из n-угольника АB…E и n- треугольников, называется пирамидой. S полн = S бок + S осн BC E M H.
Тела вращения: Цилиндр. 1.Какие из изображённых тел являются цилиндрами? 2.Какие из изображённых тел не являются цилиндрами? Ответьте на вопросы:
РА1А2…Аn – пирамида Многоугольник А1А2…Аn – основание пирамиды. Треугольники - боковые грани. Точка Р- вершина пирамиды. Отрезки РА1, РА2…РАn -боковые.
Транксрипт:

Пирамиды, несмотря на свою древность, могут многому нас научить. Исследованием пирамид с использованием новейших приборов занимались американцы, японцы. Пирамиды снимали со спутников. Американская станция "Маринер"' передала фотографии с Марса, на которых изображены такие же пирамиды что и на нашей планете, что наводит на мысль об их внеземном происхождении. Так что же такое пирамиды и усеченные пирамиды?

Определение. Часть пирамиды, образованная при сечении пирамиды плоскостью, параллельной её основанию, заключенная между секущей плоскостью и основанием, называется усеченной пирамидой.

На рисунке показана пирамида, отбрасывая её часть, лежащую выше секущей плоскости, получаем усеченную пирамиду. Коэффициент подобия равен отношению высот: k=h2/h1, или боковых ребер, или других соответствующих линейных размеров обеих пирамид. Площади подобных фигур относятся, как квадраты линейных размеров; так площади оснований усеченной пирамиды) относятся, как Здесь S1 - площадь нижнего основания, а S2 - площадь верхнего основания усеченной пирамиды. В таком же отношении находятся и боковые поверхности пирамид.

Объем усеченной пирамиды Пусть дана усеченная пирамида с высотой h и площадями оснований S1 и S2. Если представить себе, что она продолжена до полной пирамиды, то коэффициент подобия полной пирамиды и малой пирамиды легко найти, как корень из отношения S2/S1. Высота усеченной пирамиды выражается как h = h1 - h2 = h1(1 - k). Теперь имеем для объема усеченной пирамиды (через V1 и V2 обозначены объемы полной и малой пирамид) k2ЧS1=S2, поэтому

Теоремы: Если все апофемы усеченной пирамиды равны, то площадь её боковой поверхности можно вычислить по формуле: Если все апофемы усеченной пирамиды равны, то площадь её боковой поверхности можно вычислить по формуле: Если все боковые грани усеченной пирамиды наклонены к плоскости основания под одинаковым углом, то площадь её боковой поверхности можно вычислить по формуле: Если все боковые грани усеченной пирамиды наклонены к плоскости основания под одинаковым углом, то площадь её боковой поверхности можно вычислить по формуле: В правильной усеченной n-угольной пирамиде все боковые ребра равны между собой. В правильной усеченной n-угольной пирамиде все боковые ребра равны между собой.

В правильной усеченной n-угольной пирамиде все плоские углы при основаниях равны. В правильной усеченной n-угольной пирамиде все плоские углы при основаниях равны. В правильной усеченной n-угольной пирамиде все двугранные углы при основаниях равны. В правильной усеченной n-угольной пирамиде все двугранные углы при основаниях равны. В правильной усеченной n-угольной пирамиде все двугранные углы при боковых ребрах равны. В правильной усеченной n-угольной пирамиде все двугранные углы при боковых ребрах равны.

Усечённая пирамида основания боковые грани высота Площадь боковой поверхности правильной усечённой пирамиды

Спасибо за внимание!