Презентация на тему: Пирамиды Выполнил: Студент группы Т 1-07 Терентьев Кирилл 1.

Презентация:



Advertisements
Похожие презентации
От Рыбакова Дмитрия. Пирамидой называется многогранник, который состоит из плоского многоугольника --- основания пирамиды, точки, не лежащей в плоскости.
Advertisements

Комбинации многогранников и тел вращения Таск Ксения, 11 «Б»
Пирамида Пирамидой называется многогранник, который состоит из плоского многоугольника – основания пирамиды, точки, не лежащей в плоскости основания, -
Геометрия Пирамида. Пирамида - многогранник, основание которого многоугольник, а остальные грани треугольники, имеющие общую вершину. По числу углов основания.
Пирамида Подготовили : Асадова Ламия, Шимонаев Павел, Волкова Екатерина, Балыбин Артем, Олзоев Тимур.
апофема высота боковой грани правильной пирамиды, проведённая из её вершины; боковые грани треугольники, сходящиеся в вершине; боковые ребра общие стороны.
Презентация по геометрии Тема: «Пирамида». Определение Пирамидой называется многогранник, который состоит из плоского многоугольника --- основания пирамиды,
Пирамида.
Геометрия Виды геометрических фигур и их измерения 1. Треугольник - геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех.
Пирамида высотой Перпендикуляр, проведенный из вершины пирамиды к плоскости основания, называется высотойпирамиды А 1 А 1 А 2 А 2 АnАn Р А 3 А 3 Многогранник,
Тема урока: «Разные задачи на многогранники, цилиндр, конус и шар»
10 класс ПИРАМИДА слайд-лекция. 10 класс Слово «пирамида» в геометрию ввели греки, которые, как полагают, заимствовали его у египтян, создавших самые.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Составила учитель математики МОУ СОШ 3 с. Псыгансу Битохова А.А.
11 класс геометрия. Конус можно описать около пирамиды, если ее основание – многоугольник, вписанный в окружность, а вершина пирамиды проецируется в центр.
Комбинации шара с пирамидой. Определение Пирамида называется вписанной в шар, если все ее вершины лежат на границе этого шара. При этом шар называется.
Шары и многогранники презентация к лекции В.П. Чуваков.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения.
Вписанные и описанные тела. Цилиндр, описанный около призмы Цилиндр можно описать около прямой призмы если ее основание – многоугольник, вписанный в окружность.
Пирамида - многогранник, основание которого многоугольник, а остальные грани треугольники, имеющие общую вершину. По числу углов основания различают пирамиды.
Транксрипт:

Презентация на тему: Пирамиды Выполнил: Студент группы Т1-07 Терентьев Кирилл 1

Пирамида - многогранник, состоящий из плоского многоугольника, точки, не лежащей в плоскости этого многоугольника и всех отрезков, соединяющих эту точку с точками многоугольника. Данная точка называется вершиной пирамиды, а плоский многоугольник - основанием пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами основания называются рёбрами. Высота пирамиды – перпендикуляр, опущенный из вершины пирамиды на плоскость основания 2

Правильная пирамида - пирамида, у которой в основании лежит правильный n- угольник, а основание высоты совпадает с центром основания. Осью правильной пирамиды называется прямая, содержащая её высоту. Апофема - высота боковой грани правильной пирамиды Если пирамиду пересечь плоскостью, параллельной плоскости основания, то она отсечет пирамиду подобную данной. Оставшаяся часть называется усеченной пирамидой. 3

Сечения пирамиды плоскостями, проходящими через её вершину, представляют собой треугольники. Сечение, проходящее через два не соседних боковых ребра пирамиды, называется диагональным сечением. 4

Сечение, проходящее через точку, лежащую на грани пирамиды, и заданный след сечения на плоскость основания, то построение надо проводить так: находят точку пересечения плоскости данной грани и следа сечения пирамиды и обозначают её; строят прямую проходящую через заданную точку и полученную точку пересечения; повторяют эти действия и для следующих граней. 5

6 S B H A БОКОВАЯ ГРАНЬ ПИРАМИДЫ ПЕРПЕНДИКУЛЯРНА ПЛОСКОСТИ ОСНОВАНИЯ SH ПРИНАДЛЕЖИТ ПЛ. БОКОВОЙ ГРАНИ (ASB) ТОЧКА H ПРИНАДЛЕЖИТ AB ИЛИ ЕЕ ПРОДОЛЖЕНИЮ SH – ВЫСОТА ASB ДАНО: (ASB) ПЕРПЕНДИКУЛЯРНА ПЛ-ТИ ОСНОВАНИЯ. ЕСЛИ БОКОВОЕ РЕБРО ПЕРПЕНДИКУЛЯРНО ПЛОСКОСТИ ОСНОВАНИЯ, ТО ЭТО РЕБРО ЯВЛЯЕТСЯ ВЫСОТОЙ ПИРАМИДЫ

7 C S K DB M A H ДВЕ СМЕЖНЫЕ БОКОВЫЕ ГРАНИ ОДИНАКОВО НАКЛОНЕНЫ К ПЛОСКОСТИ ОСНОВАНИЯ ДАНО: SMH=SKH 1.SHM=SHK ПО КАТЕТУ И ОСТРОМУ УГЛУ 2. HM=HK 3.HMB=HKB ПО ГИПОТЕНУЗЕ И КАТЕТУ 4.MBH=KBH, BH – БИССЕКТРИСА MBK H- ЛЕЖИТ НА БИССЕКТРИСЕ УГЛА, ОБРАЗОВАННОГО ТЕМИ СТОРОНАМИ ОСНОВАНИЯ, ЧЕРЕЗ КОТОРЫЕ ПРОХОДЯТ ЭТИ ГРАНИ

8 ВСЕ БОКОВЫЕ ГРАНИ ПИРАМИДЫ РАВНОНАКЛОНЕНЫ К ПЛОСКОСТИ ОСНОВАНИЯ ДАНО : SKH=SLH=SMH C A B K S D M L H 1. SKH=SLH=SMH; ПО КАТЕТУ И ОСТРОМУ УГЛУ 2. HK=HL=HM= r r- РАДИУС ОКРУЖНОСТИ ВПИСАННОЙ В МНОГОУГОЛЬНИК H - ЦЕНТР ОКРУЖНОСТИ ВПИСАННОЙ В МНОГОУГОЛЬНИК

9 S B A H K ДВА СМЕЖНЫХ БОКОВЫХ РЕБРА ПИРАМИДЫ РАВНЫ ДАНО: AS=BS SH – ВЫСОТА; HA И HB – ПРОЕКЦИИ AS И BS AS=BS ЗНАЧИТ HA=HB H РАВНОУДАЛЕНА ОТ КОНЦОВ ОТРЕЗКА AB ТОЧКА H ПРИНАДЛЕЖИТ ПЕРПЕНДИКУЛЯРУ, ПРОВЕДЕННОМУ ЧЕРЕЗ СЕРЕДИНУ AB

10 S D C B A H БОКОВЫЕ РЕБРА ПИРАМИДЫ РАВНЫ ДАНО: BS=AS=ES=DS=CS SAH=SBH=SCH=SDH=SHE ПО ГИПОТЕНУЗЕ И КАТЕТУ; AH=BH=CH=DH=EH=R R – РАДИУС ОПИСАННОЙ ОКРУЖНОСТИ; H – ЦЕНТР ОКРУЖНОСТИ ОПИСАННОЙ ОКОЛО МНОГОУГОЛЬНИКА

11 S C K B M AH БОКОВОЕ РЕБРО ПИРАМИДЫ ОБРАЗУЕТ РАВНЫЕ УГЛЫ С ДВУМЯ ПРИМЫКАЮЩИМИ К НЕМУ СТОРОНАМИ ОСНОВАНИЯ ДАНО: УГОЛ SBA = SBC 1. SM – ВЫСОТА ASB SK – ВЫСОТА BSC 2. SMB=SKB по гипотенузе и острому углу; 3. SM=SK значит MH=KH 4. HMB=HBK по гипотенузе и катету 5. HBM=HBK. H ЛЕЖИТ НА БИССЕКТРИСЕ УГЛА, ОБРАЗОВАННОГО СТОРОНАМИ AB и BC

12 S H A B БОКОВОЕ РЕБРО ПЕРПЕНДИКУЛЯРНО ПЕРЕСЕКАЮЩЕЙСЯ С НИМ СТОРОНЕ ОСНОВАНИЯ ДАНО: SB перпендикулярно AB SB –наклонная HB – проекция По теореме о трех перпендикулярах: HB перпендикулярно AB H – лежит на перпендикуляре, проведенном к стороне AB через вершину B