Міністерство освіти та науки України Сумський державний університет Кафедра компютеризованих систем управління Наукова праця на тему: Оптимальне за енерговитратами управління швидкістю руху електромеханічної системи в процесі розгону. Науковий керівник к.т.н.Журавльов О.Ю. Виконав студент групи СУ-72 Толбатов С.В. Суми 2008
Розрахункова кінематична схема одномасової механічної частини електропривода. µ µ с* -µ с* ν 0 Ј µµcνµµcν а) б) Рисунок 1 – а) розрахункова кінематична схема одномасової механічної системи електроприводу; б) механічна характеристика µ с (ν) статичного навантаження типу "сухе тертя" Рівняння руху електропривода в абсолютних одиницях має вигляд:, Для зручності використання наукової літератури з оптимального управління уведемо позначення х 1 (τ) = ν(τ), u(τ) = μ(τ). Тоді рівняння (1) набирає вигляду: (1) (2)
При постановці задачі оптимального за енерговитратами управління системою (2) мета управління формулюється як мінімізація функціоналу: I = Додадимо координату x0 з початковим значенням x0(0) = 0, похідна якої за часом u2, в результаті чого порядок керованої системи підвищується до 2-го, а її закон руху в загальному вигляді подається системою:. Інтегрант функціоналу (3) і права частина рівняння системи (2) утворюють систему рівнянь: f0 = u2 f1 = u– μс. Супряжена до (5) система має вигляд: де ψ0(τ) і ψ1(τ) – спряжені перемінні. Із першого рівняння системи (6) отримуємо ψ0 = С0 = cоnst, ψ1 = С1 = cоnst. (3) (4) (5) (6)
не задано Гамільтонова (канонічна) система: Функція Понтрягіна: Згідно принципу максимуму, функція Понтрягіна має бути рівною нулю на всьому інтервалі 0 τ θ:. Якщо час θ зміни швидкості від початкового значення (0) до кінцевого (θ) є заданим, то: задано : (7) (8) (9) (10) (11)
Дякую за увагу