Лобачевский Николай Иванович Лобачевский, Николай Иванович - великий математик, один из творцов неевклидовой геометрии. Родился 22 октября 1793 г. в Нижегородской.

Презентация:



Advertisements
Похожие презентации
Лобачевский Николай Иванович Лобачевский, Николай Иванович - великий математик, один из творцов неевклидовой геометрии. Родился 22 октября 1793 г. в Нижегородской.
Advertisements

Евклид. Евклид.. Евклид (ок до н. э.) древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг), содержащий.
Эвклид биография БИОГРАФИЯ Евклид (ок до н. э.) древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг),
Математический вечер «Клуб веселых математиков». Цель внеклассного мероприятия Углубление и расширение учебного материала; Привитие учащимся практических.
«Начала» Евклида Автор работы: Васильева Ксения 10а.
Имена Великих математиков на страницах учебника математики.
Евклид Работа учителя ГОУСОШ 1315 г Москвы Мирсалимовой Е.Н.
Быкова Ксения 7 а класс 2011 год. Евклидова геометрия.
Евклид - древнегреческий математик. Юный математик Жил в начале III века до нашей эры Сын Наукрата, известный под именем «Геометра», ученый старого времени,
«Выдающиеся математики» О математиках учёных Все мы слышали не раз. И сегодня мы припомним Славные их имена. А кто ещё о них не знает Есть шанс узнать.
Евклид и его «Начала»
Неевклидова геометрия Геометрия – это одна из древнейших наук. Становление геометрии как математической науки связано с именами греческих ученных Фалеса,
Презентация по истории геометрии МОУ «Рождественская СОШ» Выполнил учащийся 7 класса учитель – Мотеюнене С.В год.
ЖИЗНЬ ВЕЛИКОГО МАТЕМАТИКА. Николай Иванович Лобачевский.
7 класс Аксиома параллельности прямых. Повторение « Признаки параллельности двух прямых » Задание 1.
Выполнила ученица 8 «в» класса Кирбитова Полина Реферат на тему: Руководитель: Полозова О. Г. :
Н ИКОЛАЙ И ВАНОВИЧ Л ОБАЧЕВСКИЙ Подготовила : преподаватель математики Бурова Т.Н.
Известные математики Выполнила: Козлова Анжелика Школа: МБОУ СОШ
Викторина по истории геометрии (для учащихся 7-9 классов)
Арифметика Геометрия (число) (фигуры, их формулы и размеры) Алгебра (Аналитическое искусство, решение задач с помощью уравнений) МАТЕМАТИКА.
Транксрипт:

Лобачевский Николай Иванович Лобачевский, Николай Иванович - великий математик, один из творцов неевклидовой геометрии. Родился 22 октября 1793 г. в Нижегородской губернии. Учился в Казанском университете; рано обратил на себя внимание успехами в математике, но аттестован инспекцией как "юноша упрямый, нераскаянный, весьма много о себе мечтательный", проявляющий даже "признаки безбожия". Только заступничество профессоров предотвратило исключение Лобачевского из университета и доставило ему в 1811 г.; после данного им обещания исправиться, степень магистра. К тому же году относятся первые (ненапечатанные) работы Лобачевского: комментарий на один из вопросов "Небесной механики" Лапласа и мемуар, написанный под влиянием изучения Гаусса и его наблюдения над большой кометой. В 1814 г. Лобачевский получил звание адъюнкта и приступил к чтению лекций по теории чисел. В последующие годы Лобачевский читал лекции по самым разнообразным отделам математики, а также по физике и астрономии; вместе с тем, он привел в порядок библиотеку университета, упорядочил издательскую его деятельность, позаботился о возведении ряда построек для университета. После ухода Магницкого Лобачевский, тому времени ординарный профессор, был избран в ректоры (1827) и занимал эту должность в течение 19 лет. В 1828 г. он произнес замечательную речь "О важнейших предметах воспитания", в которой отразилось его увлечение просветительными идеями XVIII столетия. В годах Лобачевский занимал должность помощника попечителя казанского учебного округа. Скончался 12 февраля 1856 г. Громкая слава Лобачевского основана на его геометрических изысканиях, начатых в годах. Сохранившаяся запись лекций Лобачевского, читанных в эти годы, показывает, что первоначально Лобачевский стоял на традиционной точке зрения, предлагая разные доказательства аксиомы параллельных линий; но уже в 1823 г., в составленном им учебнике геометрии (издан в 1910 г. казанским физико-математическим обществом), он высказался в том смысле, что "строгого доказательства сей истины до сих пор не могли сыскать; какие были даны... не заслуживают быть почтены в полном смысле математическими доказательствами".Магницкого

К 1826 г. он пришел к определенной формулировке своей новой геометрической системы, которую назвал "воображаемой геометрией" в отличие от "употребительной", евклидовой. О сущности геометрии Лобачевского см. Геометрия (Брокгауз-Ефрон, XIII, 97 и сл.). Гениальное открытие Лобачевского, сделанное им независимо от одновременных работ других геометров, было им впервые сжато изложено в феврале 1826 г. в заседании отделения физико-математических наук (см. "О началах геометрии", "Казанский Вестник", ) и затем наиболее полно развито в "Новых началах геометрии с полной теорией параллельных" ("Ученые Записки Казанского университета", ). Совершенно не понятый соотечественниками, Лобачевский постарался ознакомить со своей системой западноевропейских ученых и напечатал в 1837 г. Однако, и за границей идеи Лобачевского остались непонятыми: единственный человек, по достоинству их оценивший, Гаусс, при жизни воздерживался от открытого признания неевклидовой геометрии. В 1860-х годах была опубликована переписка Гаусса, где он свидетельствует, что развитие неевклидовой геометрии сделано у Лобачевского "мастерски в истинно геометрическом духе". С тех пор заслуги Лобачевского постепенно приобретают общее признание. Сочинения Лобачевского переводятся на иностранные языки; Казанский университет, по почину француза Гуэля, предпринимает издание "Полного собрания сочинений по геометрии Лобачевского" (Казань, ); в 1893 г., к столетию со дня рождения Лобачевского, ему воздвигается на собранные международной подпиской средства памятник в Казани, и учреждается премия его имени за сочинения по неевклидовой геометрии. При жизни Лобачевского известность доставили ему труды по другим вопросам математики и здесь в некоторых отношениях он предвосхитил позднейшее развитие науки (различение непрерывности и дифференцируемости, слитное изложение планиметрии и стереометрии). Полный перечень работ Лобачевского у Васильева ("Русский биографический словарь" )

Одна из самых известных работ Лобачевского «Геометрические исследования по теории параллельных линий»

ЕВКЛИД Евклид (ок до н. э.) древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг), содержащий основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объемов, включавшего элементы теории пределов, оказал огромное влияние на развитие математики. Работы по астрономии, оптике, теории музыки. Сведения о времени и месте его рождения до нас не дошли, однако известно, что Евклид жил в Александрии и расцвет его деятельности приходится на время царствования в Египте Птолемея I Сотера. Известно также, что Евклид был моложе учеников Платона ( до н. э.), но старше Архимеда (ок до н. э.), так как, с одной стороны, был платоником и хорошо знал философию Платона (именно поэтому он закончил «Начала» изложением т. н. платоновых тел, т. е. пяти правильных многогранников), а с другой стороны его имя упоминается в первом из двух писем Архимеда к Досифею «О шаре и цилиндре». С именем Евклида связывают становление александрийской математики (геометрической алгебры) как науки.Архимеда Прокл в комментариях к первой книге «Начал» приводит известный анекдот о вопросе, который будто бы задал Птолемей Евклиду: «Нет ли в геометрии более краткого пути, чем (тот, который изложен) в «Началах»? На что Евклид якобы ответил, что «в геометрии не существует царской дороги» (аналогичный анекдот рассказывается также об Александре и ученике Евдокса Менехме, так что он принадлежит, видимо, к числу «бродячих сюжетов»). « Начала»

Из дошедших до нас сочинений Евклида наиболее знамениты «Начала», состоящие из 15 книг. В 1-й книге формулируются исходные положения геометрии, а также содержатся основополагающие теоремы планиметрии, среди которых теорема о сумме углов треугольника и теорема Пифагора. Во 2-й книге излагаются основы геометрической алгебры. 3-я книга посвящена свойствам круга, его касательных и хорд. В 4-й книге рассматриваются правильные многоугольники, причем построение правильного пятнадцатиугольника принадлежит, видимо, самому Евклиду. Книга 5-я и 6-я посвящены теории отношений и ее применению к решению алгебраических задач. Книга 7-я, 8-я и 9-я посвящены теории целых и рациональных чисел, разработанной пифагорейцами не позднее 5 в. до н. э. Эти три книги написаны, по-видимому, на основе не дошедших до нас сочинений Архита. В книге 10-й рассматриваются квадратичные иррациональности и излагаются результаты, полученные Теэтетом. В книге 11-й рассматриваются основы стереометрии. В 12-й книге с помощью исчерпывания метода Евдокса доказываются теоремы, относящиеся к площади круга и объему шара, выводятся отношения объемов пирамид, конусов, призм и цилиндров. В основу 13-й книги легли результаты, полученные Теэтетом в области правильных многогранников. Книги 14-я и 15-я не принадлежат Евклиду, они были написаны позднее: 14-я во 2 в. до н. э., а 15-я в 6 в.

Страницы из самого известного из сочинений Евклида «Начала»