ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ 1. Электрический заряд. Закон сохранения заряда 2. Взаимодействие электрических зарядов в вакууме. Закон Кулона 3. Электростатическое поле. Напряженность поля 4. Сложение электростатических полей. Принцип суперпозиции 5. Электростатическое поле диполя 6. Взаимодействие диполей
1. Электрический заряд Электростатика – раздел физики, изучающий статические (неподвижные) заряды и связанные с ними электрические поля.
Существуют два вида электрических зарядов: заряды подобные тем, которые возникают на стекле, потертом о шелк – положительные на янтаре, потертом о мех – отрицательные Бенджамин Франклин г.
американский физик, политический и общественный деятель. Основные работы в области электричества. Объяснил действие Лейденской банки, построил первый плоский конденсатор. Изобрел молниеотвод, доказал электрическую природу молнии и тождественность земного и атмосферного электричества. Разработал теорию электрических явлений – так называемую «унитарную теорию». Работы относятся также к теплопроводности тел, к распространению звука в воде и воздухе и т.п. Является автором ряда технических изобретений. Франклин Бенджамин (1706 – 1790) американский физик, политический и общественный деятель. Основные работы в области электричества. Объяснил действие Лейденской банки, построил первый плоский конденсатор. Изобрел молниеотвод, доказал электрическую природу молнии и тождественность земного и атмосферного электричества. Разработал теорию электрических явлений – так называемую «унитарную теорию». Работы относятся также к теплопроводности тел, к распространению звука в воде и воздухе и т.п. Является автором ряда технических изобретений.
одноименные заряды отталкиваются, разноименные – притягиваются.
Если поднести заряженное тело (с любым зарядом) к легкому – незаряженному, то между ними будет притяжение – явление электризации легкого тела через влияние. На ближайшем к заряженному телу конце появляются заряды противоположного знака (индуцированные заряды) это явление называется электростатической индукцией.
Таким образом, всякий процесс заряжения есть процесс разделения зарядов. Сумма зарядов не изменяется, заряды только перераспределяются. Отсюда следует закон сохранения заряда – один из фундаментальных законов природы, сформулированный в 1747 г. Б. Франклином и подтвержденный в 1843 г. М. Фарадеем
q=const Закон сохранения заряда суммарный электрический заряд замкнутой системы не изменяется. q=const
Электрические заряды не существуют сами по себе, а являются внутренними свойствами элементарных частиц – электронов, протонов и др. Опытным путем в 1914 г. американский физик Р. Милликен показал что электрический заряд дискретен.
Заряд q любого тела составляет целое кратное от элементарного электрического заряда ( n – целое число) :
Земля имеет отрицательный заряд q= q= - 6 * 10 5 Кл это установлено по измерению напряженности электростатического поля в атмосфере Земли. это установлено по измерению напряженности электростатического поля в атмосфере Земли.
Большой вклад в исследование явлений электростатики внес знаменитый французский ученый Ш. Кулон. В 1785 г. он экспериментально установил закон взаимодействия неподвижных точечных электрических зарядов.
Кулон Шарль Огюстен Кулон Шарль Огюстен (1736 – 1806) – французский физик и военный инженер. (1736 – 1806) – французский физик и военный инженер. Работы относятся к электричеству, магнетизму, прикладной механике. Сформулировал законы трения, качения и скольжения. Установил законы упругого кручения. Исходя из этого в 1784 г. Кулон построил прибор для измерения силы – крутильные весы и с помощью их открыл основной закон электростатики – закон взаимодействия электрических зарядов на расстоянии, названный в последствии его именем. Работы относятся к электричеству, магнетизму, прикладной механике. Сформулировал законы трения, качения и скольжения. Установил законы упругого кручения. Исходя из этого в 1784 г. Кулон построил прибор для измерения силы – крутильные весы и с помощью их открыл основной закон электростатики – закон взаимодействия электрических зарядов на расстоянии, названный в последствии его именем.
2. Взаимодействие электрических зарядов в вакууме. Точечным зарядом (q) называется заряженное тело, размеры которого пренебрежительно малы по сравнению с расстоянием до других заряженных тел, с которым оно взаимодействует.
Закон Кулона сила взаимодействия точечных зарядов в вакууме пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними. здесь k 0 – коэффициент пропорциональности, зависящий от системы единиц.здесь k 0 – коэффициент пропорциональности, зависящий от системы единиц.
В СИ единица заряда 1 Кл = 1А * 1 сВ СИ единица заряда 1 Кл = 1А * 1 с где ε 0 – электрическая постоянная;где ε 0 – электрическая постоянная; 4π здесь выражают сферическую симметрию закона Кулона.4π здесь выражают сферическую симметрию закона Кулона.
Электрическая постоянная относится к числу фундаментальных физических констант и равна Элементарный заряд в СИ:Элементарный заряд в СИ: Отсюда следует, что Отсюда следует, что
Закон Кулона векторной форме: где F 1 – сила, действующая на заряд q 1 F 2 – сила, действующая на заряд q 2 r - единичный вектор, направленный от положительного заряда к отрицательному.
Силы взаимодействия между зарядами равны по величине и направлены противоположно друг другу вдоль прямой, связывающей эти заряды (третий закон Ньютона)
Если заряды не точечные, то в такой форме закон Кулона использовать нельзя - нужно интегрировать по объему.Если заряды не точечные, то в такой форме закон Кулона использовать нельзя - нужно интегрировать по объему. Закон Кулона справедлив при Закон Кулона справедлив при 10 7 – м 10 7 – м Внутри ядра действуют уже другие законы, не кулоновские силы.Внутри ядра действуют уже другие законы, не кулоновские силы.
различие заключаются в том, что заряженные тела притягиваются или отталкиваются – в зависимости от знаков их зарядов, тогда как между массами существует только гравитационное притяжение Закон Кулона в основных чертах подобен закону всемирного тяготения Ньютона Рразличие заключаются в том, что заряженные тела притягиваются или отталкиваются – в зависимости от знаков их зарядов, тогда как между массами существует только гравитационное притяжение
Сила кулоновского притяжения между электроном и протоном в атоме водорода в раз больше их гравитационного взаимодействия.
3. Электростатическое поле. Напряженность электростатического поля Теории взаимодействия:Теории взаимодействия: – Ньютон, Ампертеория дальнодействия – Ньютон, Ампер – Фарадей, Максвелл и т.д.теория близкодействия – Фарадей, Максвелл и т.д. Для электростатического поля справедливы обе эти теории.Для электростатического поля справедливы обе эти теории.
Вокруг заряда всегда есть электрическое поле, основное свойство которого заключается в том, что на всякий другой заряд, помещенный в это поле, действует сила. Электрические и магнитные поля – частный случай более общего – электромагнитного поля (ЭМП). Они могут порождать друг друга, превращаться друг в друга.
ЭМП – есть не абстракция, а объективная реальность – форма существования материи, обладающая определенными физическими свойствами, которые мы можем измерить.
Силовой характеристикой поля создаваемого зарядом q является отношение силы действующей на заряд к величине этого заряда называемое напряженностью электростатического поля, т.е.
Напряженность в векторной форме Напряженность в векторной форме здесь r – расстояние от заряда до точки, где мы изучаем это поле.здесь r – расстояние от заряда до точки, где мы изучаем это поле. Тогда Тогда При При
Вектор напряженности электростатического поля равен силе, действующей в данной точке на помещенный в нее пробный единичный положительный заряд. Единица измерения напряженности электростатического поля – ньютон на кулон (Н/Кл). 1 Н/Кл – напряженность такого поля, которое на точечный заряд 1 Кл действует с силой в 1 Н.
В СИВ СИ размерность напряженности:размерность напряженности:
4. Сложение электростатических полей. Принцип суперпозиции Если поле создается несколькими точечными зарядами, то на пробный заряд q действует со стороны заряда q k такая сила, как если бы других зарядов не было.
Результирующая сила: – это принцип суперпозиции или независимости действия сил
Результирующая напряженность поля в точке, где расположен пробный заряд, так же подчиняется принципу суперпозиции: Напряженность результирующего поля, системы точечных зарядов равна векторной сумме напряженностей полей, созданных в данной точке каждым из них в отдельности.
Пример 1 т. е. т. е. и и
В данном случае:В данном случае: и Следовательно,
Пример 2. Пример 2.
Воспользуемся теоремой косинусов: где
Если поле создается не точечными зарядами, то используют обычный в таких случаях прием. Тело разбивают на бесконечно малые элементы и определяют напряженность поля создаваемого каждым элементом, затем интегрируют по всему телу: где – напряженность поля, обусловленная заряженным элементом. Интеграл может быть линейным, по площади или по объему в зависимости от формы тела.
Плотности заряда: – линейная плотность заряда, измеряется в Кл/м; - поверхностная плотность заряда измеряется в Кл/м 2 ; – объемная плотность заряда, измеряется в Кл/м 3.
Определим напряженность электрического поля в точке А на расстоянии х от бесконечно длинного, линейного, равномерно распределенного заряда.Определим напряженность электрического поля в точке А на расстоянии х от бесконечно длинного, линейного, равномерно распределенного заряда. λ – заряд, приходящийся на единицу длины.λ – заряд, приходящийся на единицу длины.
Считаем, что х – мало по сравнению с длиной проводника. Элемент длины dy, несет заряд dq = dy λ. Создаваемая этим элементом напряженность электрического поля в точке А:Считаем, что х – мало по сравнению с длиной проводника. Элемент длины dy, несет заряд dq = dy λ. Создаваемая этим элементом напряженность электрического поля в точке А:
Вектор имеет проекции dE x и dE y причем Вектор имеет проекции dE x и dE y причем Т.к. проводник бесконечно длинный, а задача симметричная, то у – компонента вектора обратится в ноль (скомпенсируется), т.е..Т.к. проводник бесконечно длинный, а задача симметричная, то у – компонента вектора обратится в ноль (скомпенсируется), т.е..
Тогда Тогда Теперь выразим y через θ. Т.к. Теперь выразим y через θ. Т.к. То и тогда То и тогда
Напряженность электрического поля линейно распределенных зарядов изменяется обратно пропорционально расстоянию до заряда.
Задание: по тонкому кольцу радиуса R равномерно распределен заряд q. Определить Е в точке АЗадание: по тонкому кольцу радиуса R равномерно распределен заряд q. Определить Е в точке А
5. Электростатическое поле диполя Электрическим диполем называется система двух одинаковых по величине, но разноименных точечных зарядов, расстояние между которыми значительно меньше расстояния до тех точек, в которых определяется поле системы Плечо диполя – вектор, направленный от отрицательного заряда к положительному и численно равный расстоянию между зарядами.
Пример 1. Найдем Е в точке А на прямой, проходящей через центр диполя и перпендикулярной к оси.Пример 1. Найдем Е в точке А на прямой, проходящей через центр диполя и перпендикулярной к оси. т.к. А
Из подобия заштрихованных треугольников можно записать:Из подобия заштрихованных треугольников можно записать: или
Электрический момент диполя (или дипольный момент) – произведение положительного заряда диполя на плечо. Направление совпадает с направлением, т.е. от отрицательного заряда к положительному. Тогда, учитывая что, получим: или
Пример 2. На оси диполя, в точке В :Пример 2. На оси диполя, в точке В : или
Пример 3. В произвольной точке СПример 3. В произвольной точке С где При :