1 урок
Как наука теория вероятности зародилась в 17 веке. Возникновение понятия вероятности было связано как с потребностями страхования, получившего значительное распространение в ту эпоху, когда заметно росли торговые связи и морские путешествия, так и в связи с запросами азартных игр.
Слово азарт, под которым обычно понимается сильное увлечение, горячность, является транскрипцией французского слова hazard, буквально означающего случай, риск. Азартными называют те игры, а которых выигрыш зависит главным образом не от умения игрока, а от случайности.
Схема азартных игр была очень проста и могла быть подвергнута всестороннему логическому анализу. Первые попытки этого рода связаны с именами известных учёных – Алгебраиста Джероламо Кардано (1501 – 1576) Галилео Галилея (1564– 1642).
честь открытия этой теории,Однако честь открытия этой теории, которая не только даёт возможность сравнивать случайные величины, но и производить определенные математические операции с ними, принадлежит двум выдающимися ученым Блезу Паскалю (1623 – 1662) Пьеру Ферма ( ).
Ещё в древности было замечено, что имеются явления, которые обладают особенностью: при малом числе наблюдений над ними не наблюдается никакой правильности, но по мере увеличения числа наблюдений всё яснее проявляется определенная закономерность. Всё началось с игры в кости.
Азартные игры практиковались в ту пору главным образом среди знати, феодалов и дворян. Особенно распространенной была игра в кости. Число очков от 1 до 6 выпадают в среднем одинаково часто, иными словами, выражаясь языком математики, выпадение определённого числа очков имеет вероятность, равную 1/6 (т.е. отношению числа случаев, благоприятствующих событию к общему числу всех случаев).
На развитие теории вероятностей оказали влияние более серьёзные потребности науки и запросы практики, в первую очередь страховое дело, начатое в некоторых странах ещё в 16 в. В16-17 вв. учреждение страховых обществ и страхование судов от пожара распространились во многих европейских странах.
Азартные игры были для ученых только удобной моделью для решения задач и анализа понятий теории вероятности. Об этом заметил ещё Гюйгенс в своей книге О расчётах в азартной игре (1657),которая была первой книгой в мире по теории вероятностей.
Книга О расчётах в азартной игре (1657) 14 апреля июля 1695,...при – внимательном изучении предмета читатель заметит, что он занимается не только игрой, а что здесь даются основы глубокой и весьма интересной. Христиан Гюйгенс Первая книга в мире по теории вероятностей.
Гюйгенс впервые ввёл важное для теории вероятностей понятие математического ожидания, которое получило дальнейшее развитие а трудах Даниила Бернулли, Даламбера и др. Даниил Бернулли Жан Лерон Даламбер.
Понятие математического ожидания находит немало применений в разных других областях человеческой деятельности. Таким образом, в 60-е годы 17 в. были выработаны первые понятия и некоторые элементы теории вероятностей. В последующие два века учёные столкнулись с множеством новых задач, связанных с исследованием случайных явлений.
Теория вероятности, как и любой раздел математики, оперирует определённым кругом понятий. Большинству понятий теории вероятностей даются определение, но некоторые принимаются за первичные, не определяемые, как в геометрии точка, прямая, плоскость.
. Первичным понятием теории вероятностей является событие. Под событием понимают то, относительно чего после некоторого момента времени можно сказать одно и только одно из двух:Под событием понимают то, относительно чего после некоторого момента времени можно сказать одно и только одно из двух: Да, оно произошло. Нет, оно не произошло..
События в материальном мире можно разбить на три категории– достоверные, невозможные и случайные.
Достоверное событие – это такое событие, о котором заранее известно, что оно произойдет. Так, достоверным является выпадение не более шести очков при бросании обычной игральной кости, появление белого шара при извлечении из урны, содержащей только белые шары, и т.п.
Невозможное событие – это событие, о котором заранее известно, что оно не произойдёт. Примерами невозможных событий являются извлечение более четырёх тузов из обычной карточной колоды, появление красного шара из урны, содержащей лишь белые и чёрные шары, и т.п.
Случайное событие – это событие, которое может произойти или не произойти в результате испытания.
Задание 1. Какие из следующих событий – случайные, достоверные, невозможные: черепаха научиться говорит; вода в чайнике, стоящим на горячей плитезакипит; ваш день рождения – 19 октября день рождение вашего друга – 30 февраля; вы выиграете участвуя в лотереи; вы не выигрываете, участвуя в беспроигрышной лотереи; вы проиграете партию в шахматы; на следующей недели испортиться погода; вы нажали на звонок, а он не зазвонил; после четверга будет пятница; после пятницы будет воскресенье.
Задание 2. Для каждого из перечисленных событий определите, какое оно: достоверное, возможное, невозможное летом у школьников будут каникулы; 1 июля в Норильске будет солнечно; после уроков дежурные уберут кабинет; в 11-м классе школьники не будут изучать алгебру; зимой выпадает снег; при включении света, лампочка перегорит; вы выходите на улицу, а на встречу вам идет слон
Задание 3. Придумайте и запишите в тетрадь события, чтобы они соответствовали знакам в таблице например, событие 8 должно быть очень вероятным.
Подведение итогов: Что такое событие? Какое событие называют действительным? Какое событие называют случайным? Какое событие называют невозможным? Какие ученые занималась поиском закономерностей в случайных событиях?
Домашнее задание: Разбить учеников на тройки. Каждая тройка пишет реферат на одну из тем: Даниил Бернулли и его вклад в развитие теории вероятностей. Гюйгенс и его вклад в развитие теории вероятностей Блез Паскаль и его вклад в развитие теории вероятностей Ферма и его вклад в развитие теории вероятностей