П РАВИЛЬНЫЕ М НОГОГРАННИКИ. ПРАВИЛЬНЫЙ МНОГОГРАННИК- выпуклый многогранник, грани которого являются правильными многоугольниками с одним и тем же числом.

Презентация:



Advertisements
Похожие презентации
Правильные многогранники 1) Симметрия в пространстве. 1) Симметрия в пространстве. 2) Понятие правильного многогранника. 2) Понятие правильного многогранника.
Advertisements

МОУ «Цветочинская СОШ» Выполнили: Нусс Татьяна Скляр Таисия Проект по геометрии.
Точки А и А 1 называются симметричными относительно точки О, если О – середина отрезка АА 1. Точка О – центр симметрии. Точка О считается симметричной.
Правильные многогранники. Понятие правильного многогранника Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники.
Симметрия в пространстве Понятие правильного многогранника Элементы симметрии правильных многогранников.
Симметрия – в переводе с греческого соразмерность (однородность, пропорциональность, гармония) Математически строгое представление о симметрии сформировалось.
Симметрия в пространстве. Понятие симметрии СИММЕТРИЯ СИММЕТРИЯ - соразмерное, пропорциональное расположение частей чего - либо по отношению к центру,
« Симметрия … есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство » Герман Вейль.
Правильные многогранники. План изучения темы 1. Симметрия в пространстве, виды симметрии 2. Примеры симметрии в окружающем нас мире 3. Правильный многогранник,
Выполнил: Соколов Дмитрий, 10а класс МОУ СОШ 3 г.Мантурово, 2009 год. Учитель: Малышева С.Ю., учитель математики.
Трёхгранные и многогранные углы: Трёхгранным углом называется фигура образованная тремя плоскостями, ограни- ченными тремя лучами, исходящими из одной.
ПРЕДУПРЕЖДЕНИЕ Данная программа предназначена для частного просмотра. За несанкционированное изготовление копий, коммерческий прокат, трансляцию по кабельным.
Ховаева Екатерина, 10 класс. Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется.
Многогранник- это тело, поверхность которого состоит из конечного числа плоских многоугольников. Многогранник- это тело, поверхность которого состоит.
О пределение п равильного м ногогранника Многогранник н азывается п равильным, е сли : о н в ыпуклый, в се е го г рани - р авные п равильные многоугольники,
Правильные многогранники. СИММЕТРИЯ В ПРОСТРАНСТВЕ Симметрия является той идеей, посредством которой человек пытался постичь и создать порядок, красоту.
Выполнила: Цуканова Светлана 10«А». Изучить определения и свойства правильных многогранников Выступить с сообщением в классе Получить положительную оценку.
Выпуклые многогранники Авторы: Гордиенко Юлия; Немчинова Анастасия 10 «б»
Моделирование правильных многогранников 10 классВыпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в.
Транксрипт:

П РАВИЛЬНЫЕ М НОГОГРАННИКИ

ПРАВИЛЬНЫЙ МНОГОГРАННИК- выпуклый многогранник, грани которого являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине которого сходится одно и то же число ребер. Гексаэдр Тетраэдр Октаэдр Додекаэдр Икосаэдр

«эдра» - грань «тетра» - 4 «кекса» - 6 «окта» - 8 «икоса» - 20 «додека» - 12

Тетраэдр – представитель правильных выпуклых многогранников. Поверхность тетраэдра состоит из четырех равносторонних треугольников, сходящихся в каждой вершине по три. ТЕТРАЭДР

Куб или кексаэдр – представитель правильных выпуклых многогранников. Куб имеет шесть квадратных граней, сходящихся в каждой вершине по три. КУБ (ГЕКСАЭДР)

Октаэдр – представитель семейства правильных выпуклых многогранников. Октаэдр имеет восемь треугольных граней, сходящихся в каждой вершине по четыре. ОКТАЭДР

Додекаэдр – представитель семейства правильных выпуклых многогранников. Додекаэдр имеет двенадцать пятиугольных граней, сходящихся в вершинах по три. ДОДЕКАЭДР

Икосаэдр – представитель семейства правильных выпуклых многогранников. Поверхность икосаэдра состоит из двадцати равносторонних треугольников, сходящихся в каждой вершине по пять. ИКОСАЭДР

С ИММЕТРИЯ В ПРОСТРАНСТВЕ В стереометрии рассматривают симметрию относительно точки, прямой и плоскости. Точка(прямая,плоскость)называется центром(осью,плоскостью) симметрии фигуры,если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры Центр симметрии Ось симметрии Плоскость симметрии

Точки А и А1 называются симметричными относительно точки О (центр симметрии), если О- середина отрезка АА1. Точка О считается симметричной самой себе. Центр симметрии А А1 О

О СЬ СИММЕТРИИ Точки А и А1 называются симметричными относительно прямой а(ось симметрии), если прямая а проходит через середину отрезка АА1 и перпендикулярна к этому. Каждая точка прямой а считается симметричной самой себе. А а А1

П ЛОСКОСТЬ СИММЕТРИИ Точки А и А1 называются симметричными относительно плоскости α (плоскость Симметрии),если плоскость α проходит через середину отрезка АА1 и перпендикулярна к этому отрезку. Каждая точка плоскости α считается симметричной самой себе. α А А1

Симметрию можно встретить в… природе архитектуре технике быту

Э ЛЕМЕНТЫ СИММЕТРИИ ПРАВИЛЬНЫХ МНОГОГРАННИКОВ А B D C α Правильный тетраэдр не имеет центра симметрии. Прямая, проходящая через середины двух противоположных ребер, является его осью симметрии. Плоскость α, проходящая через ребро АВ перпендикулярно к противоположному ребру CD правильного тетраэдра ABCD, является плоскостью симметрии. Правильный тетраэдр имеет три оси симметрии и шесть плоскостей симметрии.

Э ЛЕМЕНТЫ СИММЕТРИИ ПРАВИЛЬНЫХ МНОГОГРАННИКОВ Куб имеет один центр симметрии- точку пересечения его диагоналей. Прямые a и b, проходящие соответственно через центры противоположных граней и середины двух противоположных ребер, не принадлежащих одной грани, являются его осями симметрии. Все оси симметрии проходят через центр симметрии. Плоскостью симметрии куба является плоскость, проходящая через любые две оси симметрии. Куб имеет девять плоскостей симметрии. a b

Э ЛЕМЕНТЫ СИММЕТРИИ ПРАВИЛЬНЫХ МНОГОГРАННИКОВ Правильный октаэдр(1), правильный икосаэдр(2) и правильный додекаэдр(3) имеют центр симметрии и несколько осей и плоскостей симметрии