Кафедра общественного здоровья и здравоохранения По дисциплине «Доказательная медицина» Тема: Методы сравнительной статистики. лекция 4 для студентов 1.

Презентация:



Advertisements
Похожие презентации
Курс математической статистики Лекционный материал Преподаватель – В.Н. Бондаренко.
Advertisements

Доцент Аймаханова А.Ш.. 1. Статистические гипотезы в медико- биологических исследованиях. 2. Параметрические критерии различий. 3. Непараметрические критерии.
Статистическая проверка статистических гипотез.. Нулевая гипотеза - выдвинутая гипотеза. Конкурирующая гипотеза - - гипотеза, которая противоречит нулевой.
ПРОВЕРКА СТАТИСТИЧЕСК ИХ ГИПОТЕЗ. Определение статистической гипотезы Статистической гипотезой называется всякое высказывание о генеральной совокупности.
Лекция 3 - Проверка гипотез в одномерном статистическом анализе 3.1. Основные понятия, используемые при проверке гипотез 3.2. Общий алгоритм статистической.
Проверка статистических гипотез 1.Формулировка задачи. Термины и определения. 2.Схема проверки статистической гипотезы. 3.Мощность критерия. 4.Проверка.
Статистическая проверка статистических гипотез. Эмпирический вариационный ряд и его график - вариационная кривая - не позволяют с полной уверенностью судить.
6 ноября 2012 г.6 ноября 2012 г.6 ноября 2012 г.6 ноября 2012 г. Лекция 5. Сравнение двух выборок 5-1. Зависимые и независимые выборки 5-2.Гипотеза о равенстве.
Проверка статистических гипотез Основные понятия и терминология Что такое статистическая гипотеза? Лекция 6.
5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г. Лекция 6. Сравнение двух выборок 6-1. Гипотеза о равенстве средних. Парные выборки 6-2.Доверительный.
Проверка статистических гипотез Лекция 20. План лекции: 1.Проверка статистических гипотез. 2.Критерии асимметрии и эксцесса. 3.Критерий Пирсона.
Проверка гипотез на примере уравнения регрессии Проверка гипотез и соответствующие статистические выводы являются одними из центральных задач математической.
Общая теория статистики Выборочный метод в статистике. Статистическая гипотеза.
МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Визуализация данных Визуализация данных Точечные оценки Точечные оценки Групповые характеристики Групповые характеристики Метод.
Расчет оптимальной численности выборки. Статистическое наблюдение сплошное Обследование всех единиц изучаемой совокупности не сплошное Обследование части.
Статистические гипотезы Лекция 2.
Статистическая гипотеза. Нулевая гипотеза Кошкарова М.
4 ноября 2012 г.4 ноября 2012 г.4 ноября 2012 г.4 ноября 2012 г. Лекция 3. Проверка статистических гипотез 3-1. Общий принцип проверки гипотез 3-2. Гипотеза.
1 Описательная статистика. 2 Основные понятия Переменная = одна характеристика объекта или события Количественные: возраст, ежегодный доход Качественные:
Проверка статистических гипотез Лекция 7 (продолжение) 1.
Транксрипт:

Кафедра общественного здоровья и здравоохранения По дисциплине «Доказательная медицина» Тема: Методы сравнительной статистики. лекция 4 для студентов 1 курса, обучающихся по специальности – Зав. кафедрой ОЗиЗ К.м.н. доц. Шульмин А. В. Красноярск, 2011

Получение информации о способах и методах сравнения количественных и качественных учетных признаков Научится трактовать медицинские сообщения в части сравнительных статистик

1. Понятие о сравнительной статистике. 2. Ознакомление с основными параметрическими и непараметрическими критериями значимости различий между переменными. 3. Определение статистической значимости различий для двух независимых и связанных выборочных совокупностей Понятие о дисперсионном анализе.

Проверка статистических гипотез Статистической гипотезой называют, гипотезу о видах неизвестного распределения или о параметрах известного распределения. Проверка статистической гипотезы заключается в сопоставлении некоторых статистических показателей, вычисленным по данным выборки со значениями этих же показателей, определенными теоретически в предположении, что проверяемая гипотеза верна. В результате проверки могут быть приняты два неправильных решения, т.е. допущены ошибки двух родов. Ошибка первого рода состоит в том, что будет отвергнута правильная гипотеза. Ошибка второго рода состоит в том, что будет принята неправильная гипотеза. Вероятность совершить ошибку первого рода принято обозначать α. На практике, наиболее часто используют α=0,05, это означает, что в 5 случаях из 100 имеется риск допустить ошибку первого рода, т.е. отвергнуть правильную гипотезу.

Классификация гипотез Статистические, нестатистические Выдвинутая, конкурирующая. Выдвинутую гипотезу называют нулевой (основной) и обозначают Н 0. Конкурирующая гипотеза Н 1 – это гипотеза альтернативная нулевой, т.е. противоречащая основной. По количеству предположений: простые, сложные. Простая – это гипотеза содержащая только одно предположение. Сложная – гипотеза состоящая из конечного или бесконечного числа простых гипотез.

Статистический критерий, статистическая область Для проверки Н 0, используют специально подобранную случайную величину, точное или приближенное значение которой известно. Эту величину обозначают через U или Z, если она распределена нормально; F или υ² - по закону Фишера; χ² - по закону «хи квадрат»; Т или t - по распределению Стьюдента. Статистическим критерием называют случайную величину служащую для проверки Н 0. Наблюдаемым значением критерия называют, значение критерия выраженное по данным выборки. После выбора определенного критерия, множество всех его возможных значений разбивается на два подмножества: содержит значения критерия при котором Н 0 отвергается; содержит значения критериев при которых Н 0 принимается.

Критической областью называют, совокупность значений критерия при которых Н 0 отвергается. Областью принятия гипотезы (областью допустимых значений), называют совокупность критерия при которой Н 0 принимают. Основной принцип проверки статистических гипотез: если наблюдаемое значение критерия принадлежит критической области, то гипотезу отвергают; если наблюдаемое значение критерия принадлежит области покрытия гипотезы, то гипотезу принимают. Критическая область и область покрытия гипотез – это интервалы, следовательно существует точка которая их разделяет. Критической точкой (границей), называют точку определяющую критическую область от области принятия гипотез. 1. Одностостороннюю критическую область левостороннюю правостороннюю 2. Двустороннюю критическую область

Высота (V или Х) Частота (Р) Рост студентов

Основные характеристики нормального распределения Среднее арифметическое значение (М) Стандартное (среднеквадратическое) отклонение (σ) Количество наблюдение (n)

Влияние диеты на величину сердечного выброса

Общий принцип использования методов оценки статистической значимости межгрупповых различий 1. Формулировка нулевой гипотезы о случайности обнаруженных различий. 2. Определение вероятности получить наблюдаемые различия при условии справедливости нулевой гипотезы. 3. Подтверждение или отвержение нулевой гипотезы на основании сравнения вероятности, полученной в п.2 с требуемым значением уровня значимости.

Формирование Выборок: Контроль Макароны Мясо Фрукты

Сравнение двух различных выборок

Две оценки дисперсии 1. Внутригрупповая дисперсия - среднее значение дисперсии, из дисперсий имеющихся выборок. 2. Межгрупповая дисперсия (дисперсия совокупности) - дисперсия результирующей выборки состоящей из средних арифметических первичных выборок

Где выборочные оценки дисперсии в группах, питавшихся как обычно (контроль), макаронами, мясом и фруктами.

Две оценки дисперсии F = 1, при отсутствии различий в выборках.

Критическое значение F V меж = число групп - 1; V вну = (численность группы 1 -1)* (численность группы 2 -1) …

Пример применения дисперсионного анализа Позволяет ли «правильное» лечение острого пиелонефрита сократить срок госпитализации? Группа А лечение, согласно «Настольного справочника врача» n=36 СДГ=4,51 сут. σ=1,98 сут. Группа Б лечение, согласно другим методикам n=36 СДГ=6,28 сут. σ=2,54 сут. Можно ли считать эти различия случайными?

Проведение вычислений

Оценка коэффициента F V меж = 2 – 1= 1; V вну = = 70

Эффективность тестов Нулевая гипотеза ПринятаОтклонена Верна ПравильноОшибка I рода Неверна Ошибка II рода Правильно

Эффективность тестов Эффективность теста – это комплексная оценка точности статистического метода, включает два понятия: Ошибка I рода (альфа, α): вероятность найти различия там, где их нет (вероятность ошибочно отклонить нулевую гипотезу, вероятность ложноположительного результата) Ошибка II рода (бета, β ): вероятность не найти различия там, где они есть (вероятность ошибочно принять нулевую гипотезу, вероятность ложноотрицательного результата)

Теоретическое распределение Стьюдента, разница средних=0, критическое значение 2,2 Фактическое распределение Стьюдента, различия средних составляют 2,2 стандартных ошибки средней Связь ошибки I и II рода

Теоретическое распределение Стьюдента, разница средних=0, критическое значение 2,7 Фактическое распределение Стьюдента, различия средних составляют 2,2 стандартных ошибки средней Вероятность ошибки II рода нарастает с уменьшением вероятности ошибки I рода

Связь ошибки I и II рода Теоретическое распределение Стьюдента, разница средних=0, критическое значение 2,2 (p=0,05) Фактическое распределение Стьюдента, различия средних составляют 4 стандартных ошибки средней Вероятность ошибки II рода уменьшается с ростом величины различий и снижением стандартной ошибки средней

Мощность теста = 1 – β Приемлемой считается β = 4α (для α = 0,05; β = 0,2; мощность = 80%) Повлиять на величину различий мы не можем, единственный вариант повысить мощность – снизить стандартную ошибку средней!

Как уменьшить стандартную ошибку? Стандартное отклонение – это тоже неизменяемое свойство. Следовательно, единственным путем для увеличения мощности и снижения числа ложноположительных результатов является увеличение объема выборки.

Доверительные интервалы для долей Доверительный интервал (confidence interval) для доли – это диапазон значений, в пределах которого с заданной вероятностью (обычно 95%) находится истинная популяционная доля. Для достаточно больших выборок распределение выборочных долей можно считать нормальным. Тогда: Доверительный интервал для доли: ДИ=p±tm p

Доверительные интервалы для долей Доверительные интервалы для долей, рассчитанные выше, являются лишь приблизительными. Точные доверительные интервалы рассчитываются, исходя из биномиального распределения. Вручную их можно определить по специальным номограммам, а на практике – в компьютерных статистических пакетах. Доверительные интервалы должны в обязательном порядке указываться для всех переменных при описании данных.

Доверительные интервалы для долей Пример: Исследователь указывает, что он исследовал 10 больных до и после лечения. Затем в таблице мы увидим, что до лечения боли в животе были у 70%, а после лечения – лишь у 20%. Данные выглядят очень убедительно - различия составляют 50%!. Теперь укажем доверительные интервалы: - До лечения - 70% (42% - 98%), после лечения - 20% (0% - 44%). Доверительные интервалы даже перекрываются!. Применение доверительных интервалов показывает, какой диапазон значений может принимать показатель в популяции, а не в конкретной выборке.

Доверительные интервалы для долей График без доверительных интервалов – дает представление только о выборке, изученной исследователем.

Доверительные интервалы для долей Тот же график, но уже с границами доверительных интервалов – диапазон, который могут принимать истинные значения в популяции.

Сравнительная статистика Для оценки достоверности относительных величин (Р), также как и для средних, необходимо рассчитывать их ошибку (мр). Расчет средней ошибки относительной величины производится по формуле: где Р - значение относительной величины, q - разница между базовым коэффициентом относительной величины и ее значением (100 Р; 1000 Р; Р и т. д.), n - число наблюдений (при количестве наблюдений менее 30 в знаменатель берется выражение n 1).

Выводы: Таким образом мы рассмотрели понятие о сравнительной статистике. Ознакомились с основными параметрическими и непараметрическими критериями значимости различий между переменными.

Рекомендованная литература по теме занятия: - обязательная; Павлушков И.В. Основы высшей математики и математической статистики: Учебник для мед. вузов - дополнительная; 1. А. Петри, К. Сэбин Наглядная медицинская статистика. – М.: ГЭОТАР- Медиа, – С Зайцев В. М., Лифляндский В. Г., Маринкин В. И. Прикладная медицинская статистика: Учебное пособие. - СПб.: Фолиант, – С

Благодарю за внимание