Презентация к уроку по алгебре (9 класс) по теме: 9 класс. Урок-презентация "Свойства функции".

Презентация:



Advertisements
Похожие презентации
Функция и её свойства 9 класс Урок повторения и обобщения изученного материала Церетели Н.К.
Advertisements

Функция и её свойства 9 класс Урок повторения и обобщения изученного материала Рубан М.Е.
Обобщающий урок в 9 классе в рамках регионального семинара для учителей из Ингушетии из Ингушетии учителя математики высшей квалификационной категории.
Функция и её свойства Церетели Н.К.. Линейная функция y=kх+m (k>0) Свойства функции 1.D(f)=(- ;+ ) 2.Е(f)= ( ;+ ) 3.Функция не является ни четной, ни.
Функция и её свойства Церетели Н.К.. Линейная функция y=kх+m (k>0) Свойства функции 1.D(f)=(- ;+ ) 2.Е(f)= ( ;+ ) 3.Функция не является ни четной, ни.
Функции и их свойства Автор: Семенова Елена Юрьевна y y = f(x) 0 x МОУ СОШ 5 – «Школа здоровья и развития» г. Радужный.
Алгебра 9 класс Составила учитель математики МОУ СОШ 31 г Краснодара Шеремета И.В.
МОУ «СОШ с.Сосновка» Графики и свойства функций Графики и свойства функций Урок повторения и обобщения изученного материала Шкурова Татьяна Михайловна.
Функции и их свойства Автор: Семенова Елена Юрьевна y y = f(x) 0 x МОУ СОШ 5 – «Школа здоровья и развития» г. Радужный.
СВОЙСТВА И ГРАФИКИ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ (9 класс) Разработано учителем математики МОУ «СОШ» п. Аджером МОУ «СОШ» п. Аджером Корткеросского района Республики.
Функции и их свойства Автор: Семенова Елена Юрьевна y y = f(x) 0 x МОУ СОШ 5 – «Школа здоровья и развития» г. Радужный.
Функции y=x -n (n N), их свойства и графики.
Презентация к уроку по алгебре (9 класс) по теме: Урок алгебры в 9-м классе "Свойства функций" по учебнику Мордковича
Свойства функций. 1)Возрастание и убывание функций. ! Функцию у = f (x) называют возрастающей на множестве Х D (f), если для любых точек х 1.
Свойства функций Постоянная функция у=С. С=4.
Функции y=x n (n N), их свойства и графики.
Электронный справочник по алгебре 8 – 9 классов Простейшие функции Учитель: Селиверстова Л.Н.
Функции х n. х 0 Свойства функции 1) D(f) = [0; +) 2) функция не является ни четной, ни нечетной, 3) возрастает на [0; +), 4) не ограничена сверху, ограничена.
Показательная функция. - это функция вида График показательной функции D(f)=(-; + ) E(f)=(0; + ) Ни четная, ни нечетная убывающаяВозрастающая НепрерывнаяНепрерывная.
Функция. Область определения и область значений функции
Транксрипт:

Функция и её свойства 9 класс Урок повторения и обобщения изученного материала Церетели Н.К.

Содержание Цели урока Определение Виды функций Свойства функций Задание 1 Задание 2 Тест

Цели урока Закрепление свойств функции Развитие умений исследования графиков функции Выполнение упражнений и построение графиков функций

Функция – зависимость одной переменной от другой, причем для любых значений х соответствует единственное значение функции y. График функции – множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты соответствующим значениям функции. Определение

Виды функций Линейная Прямая пропорциональность Обратная пропорциональность Квадратичная Квадратный корень Модуль Другие функции

Свойства функций 1. Область определения функции 2. Множество значений функции 3. Монотонность 4. Четность 5. Ограниченность 6.Наибольшее, наименьшее значение 7. Точки экстремума 8. Выпуклость 9. Пересечение с осями координат 10. Промежутки знакопостоянства

Задание 1 Изобразите схематически графики функций

Пример у = 2 х +1 х у х у

Пример у = 3 х х у х у 0 1

Пример х у х у 0 у = 4 x 1

Пример х у х у 0 у = х 2 1

Пример х у х у 0 1

х у 0 х у y=|x| 1

Задание 2 Исследовать график функции

Тест 1. Найдите область определения функции

2. Исследуйте на ограниченность функцию а) ограничена сверху б) ограничена снизу в) ограничена снизу и сверху г) не ограничена ни снизу, ни сверху

3. Среди заданных функций укажите возрастающие а) 2, 4 б) 1, 2, 4 в) 3 г) 1, 2

4. Среди заданных функций укажите убывающие а) 1, 3 б) 3 в) 3, 4 г) 1

5. Среди заданных функций укажите четные а) 1, 3 б) 1, 2 в) 3, 4 г) 1, 4

6. Среди заданных функций укажите нечетные а) 1, 3 б) 2, 4 в) 2, 3 г) 3, 4

7. Найдите множество значений функций

Верно

Не верно

Линейная функция y=kх+m (k>0) Свойства функции 1.D(f)=(- ;+ ) 2. Функция не является ни четной, ни нечетной 3. Возрастает 4. Не ограничена ни снизу, ни сверху 5. Нет ни наибольшего, ни наименьшего значений 6. Функция непрерывна 7.Е(f)= ( ;+ ) График функции - прямая 1

Линейная функция y=kx+m (k

Прямая пропорциональность y=kx (k>0) Свойства функции 1.D(f)=(- ;+ ) 2. Функция является нечетной 3. Возрастает 4. Не ограничена ни снизу, ни сверху 5. Нет ни наибольшего, ни наименьшего значений 6. Функция непрерывна 7.Е(f)= ( ;+ ) >> График функции - прямая 1

Прямая пропорциональность y=kx (k

Обратная пропорциональность (k>0) Свойства функции D(f)=(- ;0)U(0;+ ) Нечётная Убывает на открытом луче (- ;0), и на открытом луче (0;+ ) Не ограничена ни снизу, ни сверху y наим, y наиб не существует Непрерывна на открытом луче (- ;0), и на открытом луче (0;+ ) E(f )=(- ;0)U(0;+ ) Выпукла вниз при x>0, выпукла вверх при x

Обратная пропорциональность (k0, выпукла вниз при x

Квадратичная функция y=kx 2 (k>0) Свойства функции D(f)=(- ;+ ) Чётная Убывает на луче (- ;0], возрастает на луче [0;+ ) Ограничена снизу, не ограничена сверху y наим =0, y наиб не существует Непрерывна E(f)=[0;+ ) Выпукла вниз График функции - парабола

Квадратичная функция y=kx 2 (k

Квадратичная функция y=ax 2 +bx+c (a>0) Свойства функции 1.D(f)=(- ;+ ) 2. Убывает на луче (- ; ], возрастает на луче [ ; + ) 3. Ограничена снизу, не ограничена сверху 4. y наим = y 0, y наиб – не существует 5. Непрерывна 6.E(f)=[y 0 ;+ ) 7. Выпукла вниз График функции - парабола 1

Квадратичная функция y=ax 2 +bx+c (a

Квадратный корень Свойства функции 1.D(f)=[0;+ ) 2. Не является ни четной, ни нечетной 3. Возрастает на луче [0;+ ) 4. Ограничена снизу, не ограничена сверху 5. y наим =0, y наиб не существует 6. Непрерывна 7.E(f)=[0;+ ) 8. Выпукла вверх График функции – ветвь параболы в первой четверти

Модуль y=|x| Свойства функции 1.D(f)=(- ;+ ) 2.Чётная 3. Убывает на луче (- ;0], возрастает на луче [0;+ ) 4. Ограничена снизу, не ограничена сверху 5. y наим =0, y наиб не существует 6. Непрерывна 7.E(f)=[0;+ ) 8. Функцию можно считать выпуклой вниз

Функция y=x 2n+1 (n N) Свойства функции 1.D(f)=(- ;+ ) 2.Нечётная 3. Возрастает 4. Не ограничена ни снизу, ни сверху 5. y наим, y наиб не существует 6. Непрерывна 7.E(f )=(- ;+ ) 8. Выпукла вверх при x 0 График функции - кубическая парабола

Функция y=x -(2n+1) Свойства функции 1.D(f)=(- ;0)U(0;+ ) 2.Нечётная 3. Убывает на открытом луче (- ;0), и на открытом луче (0;+ ) 4. Не ограничена ни снизу, ни сверху 5. y наим, y наиб не существует 6. Непрерывна на открытом луче (- ;0), и на открытом луче (0;+ ) 7.E(f )=(- ;0)U(0;+ ) 8. Выпукла вниз при x>0, выпукла вверх при x

Функция y=x -2n Свойства функции 1.D(f)=(- ;0)U(0;+ ) 2.Чётная 3. Возрастает на открытом луче (- ;0), и убывает на открытом луче (0;+ ) 4. Ограничена снизу, не ограничена сверху 5.yнаим, yнаиб не существует 6. Непрерывна на открытом луче (- ;0), и на открытом луче (0;+ ) 7.E(f )=(0;+ ) 8. Выпукла вниз при x 0 График функции - гипербола 1

Функция y=x 2n (n N) Свойства функции 1.D(f)=(- ;+ ) 2.Чётная 3. Убывает на луче (- ;0], возрастает на луче [0;+ ) 4. Ограничена снизу, не ограничена сверху 5. y наим =0, y наиб не существует 6. Непрерывна 7.E(f)=[0;+ ) 8. Выпукла вниз График функции - парабола