Химическая кинетика и химическое равновесие

Презентация:



Advertisements
Похожие презентации
МБОУ СОШ с. Бахтыбаево Выполнил : Пазлиев Т. 11 кл год.
Advertisements

Презентация к уроку по химии (11 класс) на тему: Презентация к уроку "Скорость химических реакций"
Скорость химической реакции изменение количества одного из реагирующих веществ за единицу времени в единице реакционного пространства. Является ключевым.
Скорость химической реакции. Скорость химической реакции – это изменение количества вещества одного из реагирующих веществ в единицу времени в единице.
Скорость химической реакции. Цель: выясним, что есть скорость химической реакции, и от каких факторов она зависит. В ходе урока познакомимся с теорией.
Химическая кинетика трактует качественные и количественные изменения в ходе химического процесса, происходящие во времени. Обычно эту общую задачу подразделяют.
ОСНОВЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ ЛЕКЦИЯ 4.. Скорость ХТП Вопросы скорости химических превращений изучает кинетика. Кинетическое уравнение – уравнение, связывающее.
Колпаков В.А. Химическая кинетика. Основные понятия химической кинетики Химическая кинетика – это наука, изучающая механизм и закономерности протекания.
Скорость химических реакций Разработка урока по химии 11 класс.
Cкорость химических реакций и факторы, влияющие на неё Цель урока: - Рассмотреть и объяснить влияние различных факторов на скорость химической реакции.
Химическая кинетика Юрмазова Татьяна Александровна Томский политехнический университет.
Тема урока «Скорость химических реакций. Факторы, влияющие на скорость химической реакции» Цель: выясним, что есть скорость химической реакции, и от каких.
8. Химическая кинетика. Концентрационный фактор Учения. Игла. fishki.net.
Химическая кинетика и катализ. План лекции 1.Химическая кинетика 2.Скорость химических реакций 3.Влияние концентрации на скорость химических реакций 4.Влияние.
Органическая химия Скорость химических реакций. Определение: Скорость химической реакции – это изменение количества реагирующего вещества в единицу времени.
Химическая кинетика и равновесие КАФЕДРА ОБЩЕЙ И НЕОРГАНИЧЕСКОЙ ХИМИИ.
15 октября 2010г Учителя Самошина А.Е. Овчинникова Н.Г.
ХИМИЧЕСКАЯ КИНЕТИКА Химическая кинетика изучает скорость химических реакций, механизмы их протекания и факторы, влияющие на скорость. Скорость хим. реакции.
Скорость химической реакции. Цель: выясним, что есть скорость химической реакции, и от каких факторов она зависит. В ходе урока познакомимся с теорией.
Факторы, влияющие на скорость химической реакции.
Транксрипт:

Лекция 11. ХИМИЧЕСКАЯ КИНЕТИКА И ХИМИЧЕСКОЕ РАВНОВЕСИЕ Раздел химии, изучающий скорость и механизм химических превращений называется кинетикой. Знание скоростей химических реакций и факторов на них влияющих имеет большое научное и практическое значение. Например, в хим. промышленности при производстве того или иного вещества от скорости реакции, зависят размеры и производительность аппарата, выход продукции реакции. Выяснение кинетики реакций позволяет осуществить математическое моделирование реакций, происходящих в химических аппаратах, решать задачи оптимизации и автоматизации химико-технологических процессов (с помощью ЭВМ).

ХИМИЧЕСКАЯ КИНЕТИКА И ХИМИЧЕСКОЕ РАВНОВЕСИЕ Прежде, чем дать определение скорости реакции (которое является основным в хим. кинетике), необходимо отметить, что реакции могут быть гомогенными и гетерогенными. Гомогенными являются реакции, протекающие в однородной среде, т.е. среде, состоящей из одной фазы. Гетерогенными являются реакции, протекающие в однородной среде, т.е. среде, состоящей из нескольких фаз. Фаза – часть системы, отделенная друг от других ее частей поверхностью раздела и характеризующаяся определенными хим. свойствами и составом.

Скоростью хим. реакции называется число элементарных актов химических взаимодействий, происходящих в единице времени, в единице объема (в случае гомогенных реакций) или на единице поверхности раздела фаз (в случае гетерогенных реакций). Число химических взаимодействий (элементарных актов реакции) пропорционально концентрации реагирующих веществ, поэтому скорость реакции обычно определяют изменением концентраций реагирующих веществ во времени. СКОРОСТЬ РЕАКЦИИ

Математически это можно представить следующим образом: где C 1 и C 2 – концентрации /моль/л/ некоторого реагирующего вещества в моменты времени соответственно t 1 и t 2. C 2 – C 1 t 2 – t 1 υ = _ (1)(1)

Скорость (υ) – величина всегда положительная. Поэтому если ее определяют по расходу реагирующих веществ (C 2 C 1 ). 1 - исход. в-ва 2 - конец. в-ва 2 1 время С С ИЗМЕНЕНИЕ КОНЦЕНТРАЦИИ СО ВРЕМЕНЕМ

υ – средняя скорость химической реакции. Истинная скорость (υ) определяется пределом, к которому стремится отношение Δ С/ Δ t при Δ t 0, т.е. производной концентрации по времени В общем случае: + = ΔСΔС ΔtΔt /2/ C 2 – C 1 t 2 – t 1 υ = _ + – d С d t υ + =

Скорость реакции можно измерять по изменению концентрации любого из реагентов. Так, для реакции А + 2В = С dСАdСА d t + υ = Скорость может быть выражена двумя способами: dСВdСВ d t + υ = Однако эти скорости не равны, т.к. на 1 моль вещества А расходуется 2 моля вещества В. Они будут равны при условии, если написать: dСАdСА d t υ = dСВdСВ d t = 2 или

Зададимся вопросом: что является необходимым условием осуществления акта химического взаимодействия между двумя химическими частицами? Очевидно это, должно быть их столкновение друг с другом, т.е. частицы должны сблизиться на столько, чтобы оказаться в зоне действия силовых (электрических) полей. Только при этих условиях возможны те переходы электронов и перегруппировки атомов, в результате которых образуются молекулы новых веществ. Чем чаще происходят столкновения, тем быстрее идет реакция (фактор частоты столкновений). ФАКТОРЫ, ВЛИЯЮЩИЕ НА СКОРОСТЬ РЕАКЦИИ

Расчеты, например, показывают, что при обычных температурах и давлении число столкновений, происходящих между частицами газообразного вещества равно ~ 10 9 столкновений в секунду. Это число столкновений очень велико, и если бы каждое из них было эффективным, то все реакции протекали бы мгновенно. Таким образом, фактор частоты сам по себе еще не определяет скорость реакции !? ФАКТОРЫ, ВЛИЯЮЩИЕ НА СКОРОСТЬ РЕАКЦИИ Наблюдения, однако показывают, что столкновение частиц является необходимым, но далеко не достаточным условием химического взаимодействия. Дело в том, что не все (не каждое) столкновения приводят к химической реакции.

Эффективными будут такие столкновения (и только такие), которые имеют достаточную энергию (энергетический фактор), а кроме того и соответствующую ориентацию (фактор вероятности) ФАКТОРЫ, ВЛИЯЮЩИЕ НА СКОРОСТЬ РЕАКЦИИ Чем больше таких эффективных столкновений происходит в единицу времени, в единице объема, тем выше скорость реакции. Таким образом имеем: – знак пропорциональности 1. Скорость общему числу столкновений (фактор частоты столкновений F) 2. Скорость числу столкновений с достаточной энергией Z (энергетический фактор) 3. Скорость число столкновений с нужной ориентацией (вероятностный фактор)

ФАКТОРЫ, ВЛИЯЮЩИЕ НА СКОРОСТЬ РЕАКЦИИ Величина, пропорциональная каждой из нескольких отдельных величин, пропорциональна их произведению: υ F·Z·W Введя коэффициент пропорциональности (α) получим: υ = α·F·Z·W (3)

Из теории вероятности (а также экспериментальных данных), следует, что частота столкновений пропорциональна концентрациям взаимодействующих веществ. Для реакции: А + В = С + Д имеем F = β·C A ·C B (4) где C A и C B – концентрации соответственно веществ А и В; β – коэффициент пропорциональности. Подставляя уравнение (4) в уравнение (3) получим : υ = α·β·Z·W·C A ·C B при Т = const факторы Z и W постоянны. Фактор частоты столкновений F Частота столкновений зависит от: 1. Концентрации 2. Температуры

Объединяя все константы в одну α·β·W·Z = k' ·Z = k /5/ получаем υ = k·C A ·C B /6/ Уравнение (6) представляет собой одну из формулировок закона действия масс, первоначально установленного при изучении зависимости скоростей реакции от концентрации реагентов. Закон действия масс (одна из формулировок): «При постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ». Гульберг, Вааге … 1867 г. Бекетов … 1865 г. ФАКТОРЫ, ВЛИЯЮЩИЕ НА СКОРОСТЬ РЕАКЦИИ ЗАКОН ДЕЙСТВИЯ МАСС

для реакции, записанной в общем виде: aА + bВ еЕ + dД Кинетическое уравнение (6) имеет вид: υ = kc A n c B m (7) где k – константа скорости; при C A = C B = 1 моль/л k = υ, т. е. константа скорости равна скорости реакции при концентрациях реагентов 1 моль/л. n и m коэффициенты, называемые порядками реакции по веществам В и D. Константа скорости зависит от температуры и не зависит от концентрации реагентов. ФАКТОРЫ, ВЛИЯЮЩИЕ НА СКОРОСТЬ РЕАКЦИИ ЗАКОН ДЕЙСТВИЯ МАСС

Примечание: Вид кинетического уравнения определяется не суммарным уравнением химической реакции, а той стадией реакции, которая является самой медленной (лимитирующая стадия). Например: если реакция: аА + bВ = А a В b сложная, т.е. протекает в несколько стадий: 1. А + В АВ … медленно 2. (а-1)А + АВ А а В … быстро 3. А а В + (b-1)В А a В b … быстро то общая скорость реакции будет определяться наиболее медленной стадией, т.е. стадией 1. υ = k·C A ·C B ФАКТОРЫ, ВЛИЯЮЩИЕ НА СКОРОСТЬ РЕАКЦИИ ЗАКОН ДЕЙСТВИЯ МАСС

Выше было сказано (см. уравнение 3), что важнейшим фактором, определяющим скорость, является энергетический фактор, т.е. число столкновений Z, имеющих достаточную энергию. Этот фактор зависит от температуры Т и энергии активации Е А, т.е Z является функцией двух параметров Z = f (T, E A ) Рассмотрим энергию активации (Е А ): ФАКТОРЫ, ВЛИЯЮЩИЕ НА СКОРОСТЬ РЕАКЦИИ ЭНЕРГЕТИЧЕСКИЙ ФАКТОР.

Ход любой реакции можно представить схемой: исходные переходное конецные вещества состояние вещества Превращению исходных веществ в продукты реакции предшествует образование переходного состояния (состояние активированного комплекса). Время его жизни порядка секунд (!) Так для реакции А 2 + В 2 2АВ Можно записать начальное переходное конецное состояние /активированный состояние комплекс/ АКТИВИРОВАННЫЙ КОМПЛЕКС

Образование активированного комплекса требует затраты энергии. Реагируют только те молекулы, энергия которых не ниже некоторого предела Е А. Энергия активации Е А – энергия необходимая для перехода реагирующих молекул в состоянии активированного комплекса и последующего осуществления реакции. Молекулы с энергией равной или большей Е А – называются активными.

Изменение энергии в ходе реакции может быть представлено следующей диаграммой: исходные вещества Е' А ЕАЕА продукты реакции Источником Е А является кинетическая энергия движущих частиц. без катализатора с использованием катализатора ход реакции

Из рисунка ясно, что чем больше величина Е А, тем меньше число столкновений, обладающих этой энергией. Точное соотношение между энергией активации и числом столкновений с такой энергией Z можно выразить следующим уравнением: Z = е – Е А /RT /8/ Распределение молекул по их кинетической энергии подчиняется закону Максвелла – Больцмана Энергия КРИВАЯ МАКСВЕЛЛА – БОЛЬЦМАНА

Е А · 10 9, Дж (При Т = 25 0 С) Число столкновений c достаточной энергией Z Относительная скорость реакции 20~ / ~ 100 / / Влияние энергии активации на скорость реакции

К онстанта скорости k, входящая в выражение закона действия масс может быть представлена произведением k = k' ·Z Подставляя значение Z из уравнения /8/ получим уравнение Аррениуса: ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА СКОРОСТЬ РЕАКЦИИ Из уравнения Аррениуса видно, что поскольку Т входит в показатель степени, скорость реакции очень чувствительна к изменению температуры. – Е А /RT k = k'е

ВЛИЯНИЕ ТЕМПЕРАТУРЫ. k 4,45· ,37· ,52· ,41· ,43· ,34 Например, при повышении температуры на 100 ºС скорость реакции Н 2 + I 2 2HI возрастает примерно в 1000 раз: Эти опытные данные свидетельствуют о справедливости правила Вант–Гоффа: «при повышении температуры на каждые 10ºС, скорость реакции увеличивается в 2-4 раза». Т, ºК

Фактор вероятности W. А 2 + В 2 2АВ благоприятная неблагоприятные ориентация ориентации молекул молекул А2А2 В2В2

Химические реакции классифицируют по молекулярности и порядку реакции. Молекулярность реакции – число молекул, одновременно участвующих в элементарном акте химического взаимодействия. По этому признаку реакции делят на одномолекулярные, 2-х и 3-х молекулярные. 4-х молекулярные реакции практически не встречаются, т.к. вероятность встречи одновременно 4-х молекул меньше вероятности столкновения 2-х молекул в 108 раз.

Молекуляр - ность реакции Общий вид Примеры 1А В + СI 2 = I + I 2А + В СHI + HI = H 2 + I 2 3А + 2В С2NO + O 2 = 2NO 2 МОЛЕКУЛЯРНОСТЬ РЕАКЦИИ примеры

Порядок реакции определяется кинетическим уравнением реакции и равен сумме показателей степеней при концентрациях в этом уравнении. Реакции могут быть 1-го, 2-го, 3-го а также дробного или даже нулевого порядка. Реакция Вид кинетического уравнения Порядок реакции А В + Д υ = - dC/dt = КС А 1 А +В Д υ = - dC/dt = К·С А ·С В 2 А +В + С Д υ = - dC/dt = К·С А ·С В ·С С 3

Следует подчеркнуть, что действительная молеку- лярность химической реакции далеко не всегда совпадает с той кажущейся молекулярностью, которая вытекает из суммарного уравнения реакции. Расхождение имеет место во всех тех случаях, когда процесс протекает не непосредственно по суммарному уравнению (простые реакции), а через промежуточные стадии. Например, около С формально пятимолекулярная реакция: 4HBr + O 2 = 2H 2 O + 2Br 2 идет как бимолекулярная:

HBr + O 2 = HOОBr HООBr + HBr = 2HOBr 2(HОBr + HBr = H 2 O + Br 2 ) медленная стадия быстрая стадия υ = kC HBrC O2

Для простых реакций, т.е. реакций протекающих в одну стадию – порядок и молекулярность реакций совпадают. Для сложных реакций, т.е. протекающих в несколько стадий – порядок реакции определяется молекулярностью наиболее медленной стадии, а не суммарным уравнением реакции:

суммарная реакция … 2N 2 O 5 4NO 2 + O 2 1 стадия … N 2 O 5 N 2 O 3 + O 2 медленно 2 стадия … N 2 O 5 + N 2 O 3 4NO 2 быстро Наиболее медленная стадия – стадия 1; эта стадия определяет общую скорость и порядок реакции υ = k·С N 2 O 5 молекулярность стадии 1: ОДНОМОЛЕКУЛЯРНАЯ порядок реакции : ПЕРВЫЙ МОЛЕКУЛЯРНОСТЬ И ПОРЯДОК РЕАКЦИИ

Задачи 411. Написать выражение скорости реакций, протекающих между: а) азотом и кислородом; б) водородом и кислородом; в) оксидом азота (II) и кислородом; г) Диоксидом углерода и раскаленным углем Написать выражение скорости реакций, протекающих по схеме А + В =АВ, если: а) А и В газообразные вещества, б)А и В жидкости, смешивающиеся в любых отношениях; в)А и В вещества, находящиеся в растворе; г) А твердое вещество, а В газ или вещество, находящееся в растворе.

Задачи 413. Написать выражение скорости химической реакции, протекающей в гомогенной системе по уравнению и определить, во сколько раз увеличится скорость этой реакции, если: а) концентрация А увеличится в два раза; б) концентрация В увеличится в два раза; в) концентрация обоих веществ увеличится в два раза.

414. Во сколько раз следует увеличить концентрацию оксида углерода в системе 2СО = СО 2 + С, чтобы скорость реакции увеличилась в четыре раза? 415. Во сколько раз следует увеличить концентрацию водорода в системе N 2 + 3H 2 2NH 3, чтобы скорость реакции возросла в 100 раз? 416. Во сколько раз следует увеличить давление, чтобы скорость образования NО 2 по реакции 2NO + О 2 2N0 2 возросла 1000 раз? Задачи

417. Написать уравнение скорости реакции С + О 2 = СО 2 и определить, во сколько раз увеличится скорость реакции при увеличении концентрации кислорода в три раза Реакция между оксидом азота (II) и хлором протекает пo уравнению 2NO + Cl 2 2NOCl. Как изменится скорость реакции пи увеличении: а) концентрации оксида азота в два раза; б) концентрации хлора в два раза; в) концентрации обоих ве­ществ в два раза? Задачи

419. Во сколько раз увеличится константа скорости химической реакции при повышении температуры на 40°, если γ = 3,2? 420. На сколько градусов следует повысить температуру системы, чтобы скорость проте- кающей в ней реакции возросла в 30 раз ( γ = 2,5)? 421. При повышении температуры на 50° скорость реакции возросла в 1200 раз. Вычислить γ Вычислить γ реакции, если константа скорости ее при 120°С составляет 5, , при 170°С равна 6, Задачи