Презентация к уроку по геометрии (8 класс) по теме: Теорема Фалеса

Презентация:



Advertisements
Похожие презентации
Теорема Фалеса Теорема. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки.
Advertisements

Второй признак подобия треугольников Теорема. (Второй признак подобия.) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника.
Теорема Фалеса II урок. I. Математический диктант Вариант 1 Вариант 1 1. Теорема Фалеса заключается в том, что … 1. Теорема Фалеса заключается в том,
Теорема Фалеса. Устная работа 1) Найдите угол между биссектрисами острых углов прямоугольного треугольника. 2) Найдите углы между биссектрисами двух углов.
Треугольники Треугольник называется остроугольным если у него все углы острые (рис. 1). Треугольник называется прямоугольным если у него есть прямой угол.
Треугольники Треугольником называется …многоугольник с тремя углами. Треугольник обозначается … указанием его вершин. стороны одного соответственно равны.
Теорема Фалеса и следствия из неё. Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные.
Подобие треугольников. Задача_1: В прямоугольном треугольнике ABC проведена высота CK к гипотенузе. Назовите пары подобных треугольников. Докажите подобие.
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Средняя линия треугольника Урок 1. I. Устная работа 1) Может ли треугольник быть невыпуклым? 2) Где расположена точка пересечения высот прямоугольного.
Подобие треугольников Два треугольника называются подобными, если углы одного соответственно равны углам другого и соответствующие стороны пропорциональны.
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Свойства биссектрисы треугольника.
Средняя линия треугольника Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
Многоугольники, описанные около окружности Многоугольник называется описанным около окружности, если все его стороны касаются этой окружности. Сама окружность.
Прямая и окружность а) не иметь общих точек; б) иметь только одну общую точку. В этом случае прямая называется касательной к окружности. Общая точка называется.
Параллелограмм Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.
МБОУ «Кваркенская СОШ» Тема: «Многоугольники, описанные около окружности и вписанные в окружность.» Учитель математики : Затолюк Зоя Николаевна.
Теорема косинусов Теорема (косинусов). Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон.
Равнобедренные треугольники Треугольник называется равнобедренным, если у него … две стороны равны (рис. 1). Эти равные стороны называются …боковыми сторонами,
Транксрипт:

Теорема Фалеса Теорема. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне (рис. а). Теорему Фалеса можно применять для деления отрезка на n равных частей (рис. б).

Отношением двух отрезков AB и CD называется число, показывающее сколько раз отрезок CD и его части укладываются в отрезке АВ. Теорема о пропорциональных отрезках Говорят, что отрезки АВ, CD пропорциональны отрезкам A 1 B 1, C 1 D 1, если равны их отношения

collection.edu.ru/dlrstore/7383a6b1-0dac-11dc c9a66/index.htm

Теорема. (обобщенная теорема Фалеса) Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.

Пример 1 Стороны угла с вершиной O пересечены двумя параллельными прямыми в точках A, B и C, D соответственно. Найдите OA, если OB = 15 см и OC : OD = 2 : 5. Ответ: 6 см.

Пример 2 Докажите, что биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам. Решение: Пусть CD биссектриса треугольника ABC. Докажем, что AD : DB = AC : BC. Проведем прямую BE, параллельную CD. В треугольнике BEC угол B равен углу E. Следовательно, BC = EC. По следствию из теоремы о пропорциональных отрезках, AD : DB = AC : CE = AC : BC.

Упражнение 1 Определите, пропорциональны ли пары отрезков а, b и c, d, если: а) a = 0,8 см, b = 0,3 см, с = 2,4 см, d = 0,9 см; б) а = 50 мм, b = 6 см, с = 10 см, d = 18,5 см. Ответ: а) Да;б) нет.

Упражнение 2 Среди отрезков a, b, c, d, e выберите пары пропорциональных отрезков, если а = 2 см, b = 17,5 см, с = 16 см, d = 35 см, е = 4 см. Ответ: a, e и b, d.

Упражнение 3 Даны три отрезка: а, b, и с. Какова должна быть длина четвертого отрезка d, чтобы из них можно было образовать две пары пропорциональных отрезков, если а = 6 см, b = 3 см, с = 4 см, и отрезок d больше каждого из этих отрезков. Ответ: 8 см.

Упражнение 6 На одной из сторон угла расположены два отрезка 3 см и 4 см. Через их концы проведены параллельные прямые, образующие на другой стороне также два отрезка. Больший из отрезков равен 6 см. Чему равен другой отрезок? Ответ: 4,5 см.

Упражнение 7 Стороны угла с вершиной O пересечены двумя параллельными прямыми в точках A, B и C, D соответственно. Найдите: а) CD, если OA = 8 см, AB = 4 см, OD = 6 см; б) OC и OD, если OA : OB = 3 : 5 и OD – OC = 8 см; в) OA и OB, если OC : CD = 2 : 3 и OA + OB = 14 см. Ответ: а) 2 см;б) 12 см и 20 см;в) 4 см и 10 см.

Упражнение 8 Проекции двух сторон остроугольного треугольника АВС на прямую АС имеют длины 6 см и 4 см. Какую длину имеют проекции медиан этого треугольника на ту же прямую? Ответ: 1 см, 7 см и 8 см. А В С М DК

Упражнение 9 Каждая из сторон треугольника разделена на три равных отрезка и точки деления соединены отрезками. Найдите периметр образовавшейся при этом фигуры, если периметр исходного треугольника равен p. Ответ: p.

Упражнение 11 Ответ: см. На сторонах АВ и АС треугольника АВС взяты соответственно точки D и Е, причем AD= АВ, АЕ = АС. Чему равен отрезок DE, если отрезок ВС равен 5 см?

Упражнение 12 В треугольнике АВС сторона ВС разделена на четыре равные части и через полученные точки деления проведены прямые, параллельные стороне АВ, равной 18 см. Найдите отрезки этих прямых, заключенные внутри треугольника. Ответ: 4,5 см, 9 см, 13,5 см.

Упражнение 13 Основания трапеции равны 14 см и 20 см. Одна из боковых сторон разделена на три равные части и через точки деления проведены прямые, параллельные основаниям трапеции. Найдите отрезки этих прямых, заключенные внутри трапеции. Ответ: 16 см и 18 см.