Методическая разработка по геометрии (10 класс) по теме: урок по теме "Угол между прямыми в пространстве"

Презентация:



Advertisements
Похожие презентации
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Advertisements

УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающи- мися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Угол в пространстве Углом в пространстве называется фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Решение заданий С 2 координатно- векторным методом.
ДВУГРАННЫЙ УГОЛ. УГОЛ МЕЖДУ ПЛОСКОСТЯМИ Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой. Линейным углом.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ В ПРОСТРАНСТВЕ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной.
Многогранники: типы задач и методы их решения. Домашняя задача В основании прямой призмы АВСА 1 В 1 С 1 лежит прямоугольный равнобедренный треугольник.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающи- мися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Угол между двумя плоскостями Угол между двумя пересекающимися плоскостями, заданными уравнениями a 1 x + b 1 y + c 1 z + d 1 = 0, a 2 x + b 2 y + c 2 z.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя скрещивающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Изобразите сечение единичного куба A…D 1, проходящее через вершины A, B, C 1. Найдите его площадь. Ответ..
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
Транксрипт:

Предмет: геометрия. Презентация по теме: «Угол между прямыми в пространстве»

Расположение прямых в пространстве и угол между ними. 1 Пересекающиеся прямые. 2 Параллельные прямые. 3 Скрещивающиеся прямые.

Угол между прямыми в пространстве. Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых с вершиной в точке их пересечения. Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным. Угол между двумя параллельными прямыми- нулевой.

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия». Дьердье Пойа, венгерский математик

1. В правильной пирамиде SABCD, все ребра которой равны 1, точка E – середина ребра SC. Найдите угол между прямыми AD и BE. Решение. Искомый угол = углу CBE.Треугольник SBC-равносторонний. ВE – биссектриса угла = 60. Угол CBE равен 30. Ответ: 30.

2. В правильной 6-ой пирамиде SABCDEF, боковые ребра которой равны 2, а ребра основания – 1, найдите угол между прямыми SA и BC. Ответ: 60 о. Решение: Искомый угол равен углу SAD. Треугольник SAD – равносторонний, следовательно, = 60 о.

С2: В правильной шестиугольной призме A...F1, все ребра которой равны 1, найдите косинус угла между прямыми АВ1 и BD1.

Спасибо за внимание!