Презентация по геометрии на тему:"Теоремы об углах, образованных двумя параллельными прямыми и секущей".

Презентация:



Advertisements
Похожие презентации
Повторение. 1) b a a b = Определение. Две прямые на плоскости называются параллельными, если они не пересекаются. a c b ) Накрест лежащие.
Advertisements

Параллельные прямые Признаки параллельности прямых.
ПРИЗНАКИ ПАРАЛЛЕЛЬНОСТИ ДВУХ ПРЯМЫХ. ПРЯМАЯ c НАЗЫВАЕТСЯ СЕКУЩЕЙ ПО ОТНОШЕНИЮ К ПРЯМЫМ a И b, ЕСЛИ ОНА ПЕРЕСЕКАЕТ ИХ В ДВУХ ТОЧКАХ. a c b
Признаки параллельности двух прямых Урок 2 Тема «Признаки параллельности прямых»
Задачи для школьников : 1. Знать: а) понятие теоремы, обратной данной; б) алгоритм доказательства методом от противного; в) теоремы об углах, образованных.
Во всякой теореме различают две части: Условие - это то, что дано. Например: (теорема выражающая признак параллельности двух прямых) « при пересечении.
Определение. Две прямые на плоскости называются параллельными, если они не пересекаются.
Признак параллельности прямых Геометрия
Определение. Две прямые на плоскости называются параллельными, если они не пересекаются.
1. Определение параллельных прямых. 2. Аксиома параллельных. 3. Признаки параллельности прямых (5) 4. Что такое секущая? 5. Свойства углов, образованных.
Признаки параллельности двух прямых.. Две непересекающиеся прямые на плоскости называют параллельными M B A N.
Теорема Фалеса. Если на одной из двух прямых отложены последовательно равные отрезки и через их концы проведены параллельные прямые, пересекающие вторую.
3 Найди пары накрест лежащих углов и щелкни по ним мышкой. а b c и 6 3 и 6 2 и 4 2 и 6 4 и 5 1 и 3 3 и 5 5 и 7 1 и 8 1 и 6 Вертикальные углы.
Задачи для школьников : 1. Знать: а) определение параллельных прямых; б) углы, образованные при пересечении двух прямых третьей. 2. Уметь применять эти.
Параллельные прямые. Две прямые на плоскости называются параллельными, если Углы 1 и 5, 4 и 8, 2 и 6, 3 и 7 называются Параллельность прямых обозначается.
ПРИЗНАКИ ПАРАЛЛЕЛЬНОСТИ ПРЯМЫХ Учитель школы255 Яненко Н.М.
1.Повторить и систематизировать знания по изученной теме. 2.Подготовиться к контрольной работе.
П , 187, 195 Домашнее задание:. Признаки параллельности двух прямых Классная работа.
а b с и и- вертикальные углы; и и- соответственные углы; и и- накрест лежащие углы; и и- смежные углы; и и- односторонние углы; и и Прямые.
Параллельность прямых Учитель математики ГБОУ ЦО 354 Попельнюк Г.Н.
Транксрипт:

Теоремы об углах, образованных двумя параллельными прямыми и секущей. Исполнитель: ученик 7 «А» кл асса Рыбалко Павел г. Мытищи, 2012 год

Теорема: Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны. а в А В = 2 c

Доказательство: A B CD M N 1 2 A B CD M N 1 2 K O Пусть прямые АВ и СD параллельны, МN их секущая. Докажем, что накрест лежащие углы 1 и 2 равны между собой. Допустим, что 1 и 2 не равны. Проведем через точку О прямую КF. Тогда при точке О можно построить KON, накрест лежащий и равный 2. Но если KON = 2, то прямая КF будет параллельна СD. Получили, что через точку О проведены две прямые АВ и КF, параллельные прямой СD. Но этого не может быть. Мы пришли к противоречию, потому что допустили, что 1 и 2 не равны. Следовательно, наше допущение является неправильным и 1 должен быть равен 2, т. е. накрест лежащие углы равны. F

Теорема: Если две параллельные прямые пересечены секущей, то соответственные углы равны. а в А В = 2

Доказательство: 2 а в А В 3 1 Пусть параллельные прямые а и b пересечены секущей АВ, то накрест лежащие 1 и 3 будут равны. 2 и 3 равны как вертикальные. Из равенств 1 = 3 и 2 = 3 следует, что 1 = 2. Теорема доказана

Теорема: Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°. а в А В = 180°

Доказательство: Пусть параллельные прямые а и b пересечены секущей АВ, то соответственные 1 и 2 будут равны, 2 и 3 – смежные, поэтому = 180°. Из равенств 1 = 2 и = 180° следует, что = 180°. Теорема доказана. 2 а в А В 3 1

Решение: 1. Пусть Х – это 2, тогда 1 = (Х+70°), т.к. сумма углов 1 и 2 = 180°, в силу того, что они смежные. Составим уравнение: Х+ (Х+70°) = 180° 2Х = 110 ° Х = 55° (Угол 2) 2. Найдем 1. 55° + 70° = 125° 3. 1 = 3, т.к. они вертикальные. 3 = 5, т.к. они накрест лежащие. 125° 5 = 7, т.к. они вертикальные. 2 = 4, т.к. они вертикальные. 4 = 6, т.к. они накрест лежащие. 55° 6 = 8, т.к. они вертикальные. Задача 1: A B Условие: найдите все углы, образованные при пересечении двух параллельных A и B секущей C, если один из углов на 70° больше другого.

Решение: 1. Т.к. 4 = 45°, то 2 = 45°, потому что 2 = 4(как соответственные) 2. 3 смежен с 4, поэтому 3+ 4=180°, и из этого следует, что 3= 180° - 45°= 135° = 3, т.к. они накрест лежащие. 1 = 135°. Ответ: 1=135°; 2=45°; 3=135°. Задача 2: A B 1 Условие: на рисунке прямые А II B и C II D, 4=45°. Найти углы 1, 2,

Решение: 1. 1= 2, т.к. они вертикальные, значит 2= 45° смежен с 2, поэтому 3+ 2=180°, и из этого следует, что 3= 180° - 45°= 135° =180°, т.к. они односторонние. 4 = 45°. Ответ: 4=45°; 3=135°. Задача 3: A B 2 Условие: две параллельные прямые А и B пересечены секущей С. Найти, чему будут равны 4 и 3, если 1=45°