Показательная функция и ее применение в жизни

Презентация:



Advertisements
Похожие презентации
«Показательная функция и ее применение» Презентацию подготовил ученик 11 класса Бондаренко Игорь Учитель Абрамова Светлана Ивановна МБОУ «Ракитовская СОШ»
Advertisements

Показательная функция и ее применение.
«Показательная функция и ее применение» «Показательная функция и ее применение» Преподаватель математики Мусинова М.В г.
Показательная функция и её применение. Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании.
Российский традиционный колледж культуры Попова Л.А. Чему бы ты ни учился, ты учишься для себя. Петроний.
Презентация к уроку по алгебре (10 класс) на тему: Показательная функция, ее свойства и график
П РИМЕНЕНИЕ ПОКАЗАТЕЛЬНОЙ ФУНКЦИИ. Учитель математики Карякина Н.В.
Автор: Семёнова Елена Юрьевна МОУ СОШ 5 - «Школа здоровья и развития» г. Радужный х у 0 y = а х, а > 1 1 х у 0 y = а х, 0 < а < 1 1.
Автор: Семёнова Елена Юрьевна МОУ СОШ 5 - «Школа здоровья и развития» г. Радужный х у 0 y = а х, а > 1 1 х у 0 y = а х, 0 < а < 1 1.
Приведём примеры, где мы сталкиваемся с показательной функцией в повседневной жизни, а также, как она применяется на практике. Напомним вид показательной.
ЗАДАЧИ: узнать много интересного из истории этих функций и их приложений. Вспомнить функции у=а х ;у =log a x их свойства и графики. Сопоставить их.
Применение производной и интеграла при решении задач по физике.
Показательная функция и её свойства Муниципальное общеобразовательное учреждение гимназия 33 г. Костромы учитель математики Степанова О.Ю.
У М х ПОКАЗАТЕЛЬНАЯ ФУНКЦИЯ, ЕЕ СВОЙСТВА И ГРАФИК.
Решение показательных уравнений 11 класс. Цель:обобщить и закрепить теоретические знания методов, умения и навыки решения показательных уравнений на основе.
Практическая направленность уроков математики Работа учителя математики ДОСОШ9 Мальгиной Татьяны Павловны.
Сила тяжести. Свободное падение. Дома: §42, 43, 158.
Применение показательной функции «Великая книга природы написана математическими символами». Г. Галлилей.
Применение свойств показательной и логарифмической функций в профессии «повар» и в жизни.
Работа по теме «Показательная функция и ее применение» и ее применение» выполнена учащимися 10 «Б» класса учитель Александрова Ольга Александровна МОУ.
Транксрипт:

Исполнители: Помысухина Алина, Ляндин Вадим Исполнители: Помысухина Алина, Ляндин Вадим Учащиеся 10 «А» класса Шатковской СОШ 1. Учащиеся 10 «А» класса Шатковской СОШ 1. Руководитель: учитель математики Стёпина Т.П. Руководитель: учитель математики Стёпина Т.П. Шатки 2012

Показательной функцией называется функция вида y=a ͯ, где а - заданное число, такое, что а>0, а 1. Определение Определение

1. Область определения показательной функции - множество R всех действительных чисел. 2. Множество значений показательной функции - множество всех положительных чисел 3. Показательная функция y=a является возрастающей на множестве всех действительных чисел, если а>1, и убывающей, если 0

T=(T 1 -T 0 )e -kt +T 1 Если снять кипящий чайник с огня, то сначала он быстро остывает, а потом остывание идет гораздо медленнее, это явление описывается формулой T=(T 1 -T 0 )e -kt +T 1 Применение показательной функции в жизни, науке и технике. Применение показательной функции в жизни, науке и технике.

v=mg/k(1-e -kt/m ), При падении тел в безвоздушном пространстве скорость их непрерывно возрастает. При падении тел в воздухе скорость падения тоже увеличивается, но не может превзойти определенной величины. Если считать, что сила сопротивления воздуха пропорциональна скорости падения парашютиста, т.е. что F=kv, то через t секунд скорость падения будет равна: v=mg/k(1-e -kt/m ), где m - масса парашютиста.

M=m(e v/v0 -1) Много трудных математических задач приходится решать в теории межпланетных путешествий. Одной из них является задача об определении массы топлива, необходимого для того, чтобы придать ракете нужную скорость v. Эта масса М зависит от массы m самой ракеты (без топлива) и от скорости v 0, с которой продукты горения вытекают из ракетного двигателя. Если не учитывать сопротивление воздуха и притяжение Земли, то масса топлива определиться формулой: M=m(e v/v0 -1) (формула К.Э.Циалковского). Например, для того чтобы ракете с массой 1,5 т придать скорость 8000 м/с, надо при скорости истечения газов 2000 м/с взять примерно 80 т топлива.

s=Ae -kt sin(ωt+ω). Если при колебаниях маятника, гири, качающейся на пружине, не пренебрегать сопротивлением воздуха, то амплитуда колебаний становится все меньше, колебания затухают. Это явление можно объяснить формулой: s=Ae -kt sin(ωt+ω).

Рост народонаселения. Изменение числа людей в стране на небольшом отрезке времени описывается формулой, где N0 - число людей в момент времени t=0, N -число людей в момент времени t, a-константа.

N = N 0 e kt По такому же принципу распространились завезённые в Австралию кролики, которые стали экологической катастрофой для этого уникального региона. Рост различных видов микроорганизмов и бактерий, дрожжей, ферментов все эти процессы подчиняются одному закону: N = N 0 e kt Закон органического размножения: при благоприятных условиях (отсутствие врагов, большое количество пищи) живые организмы размножались бы по закону показательной функции. Например: одна комнатная муха может за лето произвести особей потомства. Их вес составил бы несколько миллионов тонн (а вес потомство пары мух превысил бы вес нашей планеты), они бы заняли огромное пространство, а если выстроить их в цепочку, то её длинна будет больше, чем расстояние от Земли до Солнца. Но так как, кроме мух существует множество других животных и растений, многие из которых являются естественными врагами мух их количество не достигает вышеуказанных значений.

m = m 0 (1/2) -t/t 0 M = M 0 e -kt Когда радиоактивное вещество распадается, его количество уменьшается, через некоторое время остается половина от первоначального вещества. Этот промежуток времени t 0 называется периодом полураспада. Общая формула для этого процесса: m = m 0 (1/2) -t/t 0, где m 0 - первоначальная масса вещества. Чем больше период полураспада, тем медленнее распадается вещество. Это явление используют для определения возраста археологических находок. Радий, например, распадается по закону: M = M 0 e -kt. Используя данную формулу ученые рассчитали возраст Земли (радий распадается примерно за время, равное возрасту Земли).

Исследуя расположение планет солнечной системы вокруг Солнца, немецкий астроном И.Э. Боде в 1772 составил следующую таблицу: Планета Расстояние (L) до солнца (в астрономических единицах) 1Меркурий 0,4 2Венера 0,7 3Земля 1 4Марс 1,5 5 6Юпитер 5,2 7Сатурн 9,5 К тому времени было открыто только шесть планет, поэтому все вычисления останавливаются на Сатурне. Эти вычисления произвел И.Э. по следующей формуле: Данная формула особенно точна для Венеры, Земли и Юпитера.

Как известно, между Марсом и Юпитером планеты не существует, но если следовать таблице Боде, на данной орбите должно находиться какое-либо космическое тело. И действительно, после некоторых исследований учёными был открыт пояс астероидов. Это было воистину торжеством науки и триумфом математики!