Диэлектрики Виды диэлектриков и их поляризация Теорема Гаусса для вектора поляризации Вектор электрического смещения Теорема Гаусса для вектора электрического.

Презентация:



Advertisements
Похожие презентации
Диэлектрики Виды диэлектриков и их поляризация. Вектор электрического смещения. Теорема Остроградского-Гаусса для вектора. Условия на границе раздела двух.
Advertisements

Тема 4. ДИЭЛЕКТРИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ 4.1. Поляризация диэлектриков 4.2. Различные виды диэлектриков 4.3. Вектор электрического смещения 4.4. Поток.
Подготовил ученик 10 класса Машканцев Юрий ДИЭЛЕКТРИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ.
Поляризация диэлектриков Все известные в природе вещества, в соответствии с их способностью проводить электрический ток, делятся на три основных класса:
Электростатика и постоянный ток Степанова Екатерина Николаевна доцент кафедры ОФ ФТИ ТПУ Сегодня: пятница, 11 апреля 2014 г.
Лекция 6. Расчет потенциалов простейших электростатических полей 6.1. Уравнения Лапласа и Пуассона 6.2. Силовые линии и эквипотенциальные поверхности 6.3.
Лекция 10 Электрическое поле в среде. Поляризация диэлектриков План лекции. 1. Электрический диполь. Диполь в однородном и неоднородном поле. 2. Диэлектрики.
Электрическое поле в диэлектриках АВТФ весна 2011 г. Лектор А.П. Чернышев.
Кузнецов Сергей Иванович доцент кафедры ОФ ЕНМФ ТПУпонедельник, 16 декабря 2013 г. Электростатика.
ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ В ДИЭЛЕКТРИКАХ Типы диэлектриков и их поляризация Диэлектрики - вещества, в которых практически отсутствуют свободные носители.
Электродинамика Лекция 10. Работа в электрическом поле. Потенциал При перемещении пробного заряда q в электрическом поле электрические силы совершают.
Аналогичные вычисления для диэлектриков с полярными молекулами дают такой же результат. Из формулы( ) следует, что в тех местах диэлектрика, где.
Применим операцию ротор к уравнению (3.19.1) Ранее было получено где - плотность макроскопического тока. Аналогичная формула имеет место и для вектора.
1.14. Диэлектрики в электрическом поле Типы диэлектриков Диэлектриками (изоляторами) называются вещества не способные проводить электрический ток. Это.
Проводник Поверхностная плотность заряда Диэлектрик Диэлектрическая проницаемость.
ПРОВОДНИКИ И ДИЭЛЕКТРИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ. ПРОВОДНИКИ: вещества, в которых имеются свободные носители электрических зарядов. ПРОВОДНИКИ МЕТАЛЛЫ ЭЛЕКТРОЛИТЫ.
На этом уроке мы рассмотрим поведение в электрическом поле веществ, которые не могут проводить электрический ток (диэлектриков), и тех веществ, которые.
Проводники и диэлектрики По электрическим свойствам (уровню подвижности заряженных частиц) вещества деление проводники диэлектрики полупроводники.
ЛИТЕРАТУРА И.В. Савельев. Курс общей физики, книга 2, 1998 г. Ю.И. Тюрин, И.П. Чернов, Ю.Ю. Крючков. Физика, часть 2, Электромагнетизм г. С.Г. Калашников.
Лекция 12 Электростатическое поле. Электрическое поле вокруг бесконечно длинной прямой равномерно заряженной нити линейная плотность заряда (Кл/м).
Транксрипт:

Диэлектрики Виды диэлектриков и их поляризация Теорема Гаусса для вектора поляризации Вектор электрического смещения Теорема Гаусса для вектора электрического смещения Условия на границе раздела двух диэлектриков

Классы веществ Все известные в природе вещества, в соответствии с их способностью проводить электрический ток, делятся на три основных класса: диэлектрики полупроводники проводники

В качестве примеров использования различных диэлектриков можно привести: сегнетоэлектрики – электрические конденсаторы, ограничители предельно допустимого тока, позисторы, запоминающие устройства; пьезоэлектрики – генераторы ВЧ и пошаговые моторы, микрофоны, наушники, датчики давления, частотные фильтры, пьезоэлектрические адаптеры; пироэлектрики – позисторы, детекторы ИК- излучения, болометры (датчики инфракрасного излучения), электрооптические модуляторы.

Диэлектрики – вещества, практически не проводящие электрического тока, так как в них отсутствуют свободные заряды, способные перемещаться на значительные расстояния. Тем не менее при внесении диэлектрика в электрическое поле на его поверхности появляются электрические заряды, называемые поляризационными.

Смещение электрических зарядов вещества под действием электрического поля, в результате чего на поверхности, а также, вообще говоря, и в его объеме появляются нескомпенсированные заряды, называется поляризацией.

ЭЛЕКТРОННАЯ ПОЛЯРИЗАЦИЯ Молекулы некоторых диэлектриков не имеют собственного дипольного момента. Такие молекулы называются неполярными. Центры тяжести положительного и отрицательного зарядов у таких молекул совпадают.

При внесении диэлектрика в электрическое поле происходит смещение зарядов в пределах молекулы: положительных – по полю, отрицательных - против поля. Молекула приобретает дипольный момент.

ОРИЕНТАЦИОННАЯ ПОЛЯРИЗАЦИЯ Молекулы других диэлектриков могут иметь собственный дипольный момент. Центры тяжести положительного и отрицательного зарядов у таких молекул не совпадают. Молекулы называются полярными.

ИОННАЯ ПОЛЯРИЗАЦИЯ

Этот тип поляризации характерен для твердых диэлектриков, у которых решетка построена из положительных и отрицательных ионов. Подрешетки располагаются таким образом, что электрический момент кристаллов равен нулю. При включении поля подрешетки сдвигаются друг относительно друга, кристалл приобретает электрический момент.

Под действием электрического поля в пределах каждой молекулы происходит смещение зарядов, положительных по полю, отрицательных против поля. В результате чего неполярная молекула приобретает дипольный момент. Полярная молекула обладает собственным дипольным моментом. В отсутствии поля дипольные моменты полярных молекул ориентированы хаотично, под действием внешнего электрического поля дипольные моменты ориентируются преимущественно по полю.

Во всех случаях на поверхности диэлектрика появляются поверхностные связанные заряды.

Внутри диэлектрика электрические заряды диполей компенсируют друг друга. Но на внешних поверхностях диэлектрика, появляются заряды противоположного знака (поверхностно связанные заряды).

Обозначим напряженность электростатического поля связанных зарядов а напряженность внешнего поля. Результирующее электростатическое поле внутри диэлектрика В проекциях

Вектор поляризации Для количественного описания поляризации диэлектрика берут дипольный момент единицы объема где - физически бесконечно малый объем. Вектор поляризации (поляризованность) представим в виде:

Другое выражение связано с представлением диэлектрика как смеси двух «жидкостей»: положительной и отрицательной. Если выделить объем то он будет содержать - положительный заряд и - отрицательный заряд.

Для большинства изотропных диэлектриков где - диэлектрическая восприимчивость, а - поляризуемость одной молекулы, которая показывает насколько легко индуцировать электрическим полем дипольный момент у атома.

Теорема Гаусса для вектора поляризации Поток вектора сквозь произвольную замкнутую поверхность равен взятому с противоположным знаком избыточному связанному заряду диэлектрика в объеме, охватываемом поверхностью

Выберем гауссову поверхность, частично охватывающую диэлектрик,

В результате поляризации диэлектрика через сечение проходит: - положительный связанный заряд, - отрицательный связанный заряд.

Суммарный связанный заряд, прошедший через сечение равен Таким образом Просуммировав по всей поверхности, получаем

Вышедший через поверхность заряд равен по модулю, но противоположен по знаку связанному избыточному заряду, оставшемуся внутри поверхности Доказано В дифференциальной форме

Поведение вектора P на границе двух сред Воспользуемся теоремой Гаусса для вектора поляризации Пренебрегая потоком через боковую поверхность, запишем

Учитывая, что получим или Если вторая среда вакуум, то

Рассмотрим поведение вектора на границе раздела двух диэлектриков. В качестве гауссовой поверхности возьмем небольшой цилиндр. Высоту цилиндра будем считать пренебрежимо малой, а настолько малой, чтобы вектор для каждой точки можно было бы считать одинаковым. Нормаль к поверхности всегда будем проводить от первого диэлектрика ко второму.

Знак проекции определяет и знак Если то на поверхности диэлектрика находится положительный заряд, если же то отрицательный.

Вектор электрического смещения Рассмотрим теорему Гаусса для электростатического поля, которое в общем случае создается как сторонними, так и связанными зарядами Преобразуем формулу

Продолжим преобразования Вектор называют вектором электрического смещения. Вектор электрического смещения вводится для удобства расчета полей в средах.

Теорема Гаусса для вектора Приходим к теореме Гаусса для вектора Поток вектора электрического смещения сквозь произвольную замкнутую поверхность равен алгебраической сумме сторонних зарядов, охватываемых этой поверхностью. В дифференциальной форме

В случае изотропных диэлектриков, для которых справедливо получаем Величина называется диэлектрической проницаемостью вещества.

Поле вектора также может быть представлено с помощью линий, направление и густота которых определяются точно так же как и для линий вектора Источниками и стоками поля являются только сторонние заряды. Только на них могут начинаться и заканчиваться линии вектора Через область поля, где находятся связанные заряды, линии вектора проходят не прерываясь.

Условия на границе раздела двух диэлектрических сред. Найдем циркуляцию вектора вдоль контура, имеющего форму вытянутого прямоугольника. Тангенциальная составляющая вектора не испытывает скачок на границе раздела.

Воспользуемся теоремой Гаусса для вектора Возьмем очень малой высоты цилиндр, расположив его на границе раздела. В общем случае на границе раздела могут находиться сторонние заряды.

Тогда Если сторонние заряды на границе раздела отсутствуют, то Нормальная составляющая вектора электрического смещения не испытывает скачок на границе раздела двух сред, если нет сторонних зарядов на границе.

Рассмотрим полученные условия Разделим одно на другое, получим

Рассмотрим рисунок. Из рис. ясно, что Следовательно,

Полученный закон преломления справедлив и для линий вектора электрического смещения

Смысл диэлектрической постоянной Поместим диэлектрик в однородное электрическое поле Учтем, что тогда

Таким образом, диэлектрическая постоянная показывает во сколько раз ослабляется поле внутри диэлектрика. Умножим обе части на, получим

СЕГНЕТОЭЛЕКТРИКИ В 1920 г. была открыта спонтанная (самопроизвольная) поляризация. Всю группу веществ, назвали сегнетоэлектрики (или ферроэлектрики). Все сегнетоэлектрики обнаруживают резкую анизотропию свойств (сегнетоэлектрические свойства могут наблюдаться только вдоль одной из осей кристалла). У изотропных диэлектриков поляризация всех молекул одинакова, у анизотропных – поляризация, и следовательно, вектор поляризации в разных направлениях разные.

Основные свойства сегнетоэлектриков: 1. Диэлектрическая проницаемость ε в некотором температурном интервале велика( ). 2. Значение ε зависит не только от внешнего поля E 0, но и от предыстории образца (явление гистерезиса). 3. Диэлектрическая проницаемость ε (а следовательно, и Р ) – нелинейно зависит от напряженности внешнего электростатического поля (нелинейные диэлектрики). 4. Наличие точки Кюри - температуры, при которой сегнетоэлектрические свойства исчезают.

Например: Титанат бария - ; Сегнетова соль - Ниобат лития -

ПЕТЛЯ ГИСТЕРЕЗИСА

Стремление к минимальной потенциальной энергии и наличие дефектов структуры приводит к тому, что сегнетоэлектрик разбит на домены

ЭЛЕКТРЕТЫ Среди диэлектриков есть вещества, называемые электреты – диэлектрики, длительно сохраняющие поляризованное состояние после снятия внешнего электростатического поля (аналоги постоянных магнитов).

ПЬЕЗОЭЛЕКТРИКИ Некоторые диэлектрики поляризуются не только под действием электрического поля, но и под действием механической деформации. Это явление называется пьезоэлектрическим эффектом. Явление открыто братьями Пьером и Жаком Кюри в 1880 году. Если на грани кристалла наложить металлические электроды (обкладки) то при деформации кристалла на обкладках возникнет разность потенциалов. Если замкнуть обкладки, то потечет ток.

Возможен и обратный пьезоэлектрический эффект: Возможен и обратный пьезоэлектрический эффект: Возникновение поляризации сопровождается механическими деформациями. Возникновение поляризации сопровождается механическими деформациями. Если на пьезоэлектрический кристалл подать напряжение, то возникнут механические деформации кристалла, причем, деформации будут пропорциональны приложенному электрическому полю Е 0. Если на пьезоэлектрический кристалл подать напряжение, то возникнут механические деформации кристалла, причем, деформации будут пропорциональны приложенному электрическому полю Е 0. Сейчас известно более 1800 пьезокристаллов.Сейчас известно более 1800 пьезокристаллов. Все сегнетоэлектрики обладают пьезоэлектрическими свойствами Все сегнетоэлектрики обладают пьезоэлектрическими свойствами Используются в пьезоэлектрических адаптерах и других устройствах). Используются в пьезоэлектрических адаптерах и других устройствах).

ПИРОЭЛЕКТРИКИ Пироэлектричество – появление электрических зарядов на поверхности некоторых кристаллов при их нагревании или охлаждении. При нагревании один конец диэлектрика заряжается положительно, а при охлаждении он же – отрицательно. Появление зарядов связано с изменением существующей поляризации при изменении температуры кристаллов. Все пироэлектрики являются пьезоэлектриками, но не наоборот. Некоторые пироэлектрики обладают сегнетоэлектрическими свойствами.

ПРИМЕНЕНИЕ ДИЭЛЕКТРИКОВ В качестве примеров использования различных диэлектриков можно привести: сегнетоэлектрики – электрические конденсаторы, ограничители предельно допустимого тока, позисторы, запоминающие устройства; пьезоэлектрики – генераторы ВЧ и пошаговые моторы, микрофоны, наушники, датчики давления, частотные фильтры, пьезоэлектрические адаптеры; пироэлектрики – позисторы, детекторы ИК- излучения, болометры (датчики инфракрасного излучения), электрооптические модуляторы.